scholarly journals Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications

eLight ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jianghao Xiong ◽  
Shin-Tson Wu

AbstractPlanar and ultrathin liquid crystal (LC) polarization optical elements have found promising applications in augmented reality (AR), virtual reality (VR), and photonic devices. In this paper, we give a comprehensive review on the operation principles, device fabrication, and performance of these optical elements. Optical simulations methods for optimizing the device performance are discussed in detail. Finally, some potential applications of these devices in AR and VR systems are illustrated and analyzed.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yan-qing Lu ◽  
Yan Li

AbstractAs a promising candidate for next-generation mobile platforms, virtual reality and augmented reality have the potential to revolutionize the way we perceive and interact with various types of digital information. In the meantime, ultrathin planar liquid crystal polarization optics are enabling a new evolutionary trend in near-eye displays. A recent invited review paper published in eLight provides an insightful review on liquid crystal optical elements and their applications toward AR and VR.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jianghao Xiong ◽  
En-Lin Hsiang ◽  
Ziqian He ◽  
Tao Zhan ◽  
Shin-Tson Wu

AbstractWith rapid advances in high-speed communication and computation, augmented reality (AR) and virtual reality (VR) are emerging as next-generation display platforms for deeper human-digital interactions. Nonetheless, to simultaneously match the exceptional performance of human vision and keep the near-eye display module compact and lightweight imposes unprecedented challenges on optical engineering. Fortunately, recent progress in holographic optical elements (HOEs) and lithography-enabled devices provide innovative ways to tackle these obstacles in AR and VR that are otherwise difficult with traditional optics. In this review, we begin with introducing the basic structures of AR and VR headsets, and then describing the operation principles of various HOEs and lithography-enabled devices. Their properties are analyzed in detail, including strong selectivity on wavelength and incident angle, and multiplexing ability of volume HOEs, polarization dependency and active switching of liquid crystal HOEs, device fabrication, and properties of micro-LEDs (light-emitting diodes), and large design freedoms of metasurfaces. Afterwards, we discuss how these devices help enhance the AR and VR performance, with detailed description and analysis of some state-of-the-art architectures. Finally, we cast a perspective on potential developments and research directions of these photonic devices for future AR and VR displays.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (51) ◽  
pp. 3465-3470
Author(s):  
Avinash Mamidanna ◽  
Zeming Song ◽  
Cheng Lv ◽  
Christopher S. Lefky ◽  
Hanqing Jiang ◽  
...  

ABSTRACTFabrication methods and performance characteristics of spiral stretchable interconnects fabricated using drop-on-demand printing of silver reactive inks are discussed. This work details ink optimization, device fabrication, and device characterization while demonstrating the potential applications for reactive inks and new design strategies in stretchable electronics. Devices were printed with an ethanol stabilized silver diamine reactive ink and cycled to 160 % over 100 cycles with less than 10% increase in electrical resistance. Maximum deformation before failure was measured at 180% elongation. A novel method for fabrication of a stretchable electronics device has been studied and verified.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 563
Author(s):  
Vladimir Chigrinov ◽  
Qi Guo ◽  
Aleksey Kudreyko

This paper examines different applications of ferroelectric liquid crystal devices based on photo-alignment. Successful application of the photo-alignment technique is considered to be a critical breakthrough. A variety of display and photonic devices with azo dye aligned ferroelectric liquid crystals is presented: smart glasses, liquid crystal Pancharatnam–Berry phase optical elements, 2D/3D switchable lenses, and laser therapy devices. Comparison of electro-optical behavior of ferroelectric liquid crystals is described considering the performance of devices. This paper facilitates the optimization of device design, and broadens the possible applications in the display and photonic area.


2020 ◽  
Vol 61 (9) ◽  
pp. 1258-1265 ◽  
Author(s):  
Mohammad Elsayed ◽  
Nadja Kadom ◽  
Comeron Ghobadi ◽  
Benjamin Strauss ◽  
Omran Al Dandan ◽  
...  

The modern-day radiologist must be adept at image interpretation, and the one who most successfully leverages new technologies may provide the highest value to patients, clinicians, and trainees. Applications of virtual reality (VR) and augmented reality (AR) have the potential to revolutionize how imaging information is applied in clinical practice and how radiologists practice. This review provides an overview of VR and AR, highlights current applications, future developments, and limitations hindering adoption.


Author(s):  
Yuzhu Lu ◽  
Shana Smith

In this paper, we present a prototype system, which uses CAVE-based virtual reality to enhance immersion in an augmented reality environment. The system integrates virtual objects into a real scene captured by a set of stereo remote cameras. We also present a graphic processing unit (GPU)-based method for computing occlusion between real and virtual objects in real time. The method uses information from the captured stereo images to determine depth of objects in the real scene. Results and performance comparisons show that the GPU-based method is much faster than prior CPU-based methods.


Author(s):  
R.A. Grier ◽  
H. Thiruvengada ◽  
S.R. Ellis ◽  
P. Havig ◽  
K.S. Hale ◽  
...  

2019 ◽  
Vol 9 (6) ◽  
pp. 1182 ◽  
Author(s):  
Hongyue Gao ◽  
Fan Xu ◽  
Jicheng Liu ◽  
Zehang Dai ◽  
Wen Zhou ◽  
...  

In this paper, we propose a holographic three-dimensional (3D) head-mounted display based on 4K-spatial light modulators (SLMs). This work is to overcome the limitation of stereoscopic 3D virtual reality and augmented reality head-mounted display. We build and compare two systems using 2K and 4K SLMs with pixel pitches 8.1 μm and 3.74 μm, respectively. One is a monocular system for each eye, and the other is a binocular system using two tiled SLMs for two eyes. The viewing angle of the holographic head-mounted 3D display is enlarged from 3.8 ∘ to 16.4 ∘ by SLM tiling, which demonstrates potential applications of true 3D displays in virtual reality and augmented reality.


Sign in / Sign up

Export Citation Format

Share Document