liquid crystal devices
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 55)

H-INDEX

31
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Xiulan Yang ◽  
Minzhao Gu ◽  
Qunmei Wei ◽  
Yang Zhang ◽  
Sihan Wu ◽  
...  

Photo-embossing has been developed as a convenient and economical method for creating complex surface relief structures in polymer films. The pursuit for large aspect ratios of the photo-embossed structures has never stopped. Here, we demonstrate a simple strategy to obtain improved aspect ratios by adding a quick solvent developing step into the photo-embossing process. A good solvent for the monomer is used to remove unreacted monomers from the unexposed region, resulting in deepened valleys of the surface reliefs. In a polymer film as thin as 2.5 µm, the height of the surface reliefs can be increased by a factor of three to around 1.0 µm. This strategy is also shown to be compatible with other methods used to improve the aspect ratios of the photo-embossed structures. Lastly, we employ these surface relief structures in the fabrication of liquid crystal (LC) devices and investigate their performances for visible light regulation.


Author(s):  
Masahiro Ito ◽  
Kazuma Kajiwara ◽  
Kohki Takatoh

Abstract Display characteristics have a fairly strong dependence on the configuration of the liquid crystal (LC) molecules and interactions between the LC molecules and the alignment layer surface. To obtain LC devices with a fast response, the usage of reactive mesogens (RMs) have been studied. RMs polymerize in the vicinity of the alignment layer. We assessed the effectiveness of linearly polarized UV light for polymer formation. Three kinds of UV light, namely (i)non-polarized (ii)parallel to, and (iii)perpendicular to the rubbing direction, were used to irradiate LC cells with RM concentrations of 5wt% and 10wt%. For both RM concentrations, LC devices using LPUV parallel to the rubbing direction yielded the shortest decay times. SEM observation revealed that the fibrils polymerized linearly in the same direction on using LPUV parallel to the rubbing direction. The decay time was presumably shortened by the strong anchoring force and high alignment ability of the linear fibrils.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1541
Author(s):  
Masahiro Ito ◽  
Satoshi Ohmi ◽  
Kohki Takatoh

Stabilized reverse twisted nematic liquid crystal devices (RTN-LCDs) were fabricated using formation of a polymer matrix under UV irradiation with an applied voltage (sustain voltage) in the vicinity of the alignment layers. In the absence of an applied voltage, the non-stabilized RTN structure gradually returns to a splay twist structure. The sustain voltage was decreased with an increase in temperature. A stabilized long-pitch supertwisted nematic (LPSTN) structure could also be formed during the RTN structure stabilization process with a much lower sustain voltage at a temperature near the clearing point. The chiral pitch for the LPSTN structure is longer than that for a typical STN structure. LPSTN-LCDs similar to RTN-LCDs show a large reduction in both the threshold and saturation voltage compared with those for TN-LCDs consisted of the same LC materials. Furthermore, a notable feature of LPSTN-LCDs is a change to a TN structure when a high voltage is applied. A black state can be realized due to the change from the LPSTN structure to the RTN structure unlike the typical STN mode under the crossed nicols condition. In contrast STN-LCDs retain their color due to the retardation because the RTN and LPSTN states are considered topologically equivalent.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012105
Author(s):  
A S Toikka

Abstract In this paper, the influence of laser ablation on the refractive properties of indium tin oxides (ITO) thin films with deposited single-wall Carbon Nanotubes (CNTs) was considered. Sputtering of CNTs was preliminary based on the laser-oriented method with application of the external electric field. The laser ablation of ITO-CNTs coatings allows changing the electric, optical and mechanical properties dramatically. Moreover, this technical operation permit to switch the topology of the surface, thus it leads to the conversion of the refractive index. The possibility of index-matching due to the laser treatment contributes to the expansion of the technical capabilities of LC devices.


2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
David Webb ◽  
Yuriy Garbovskiy

Liquid crystal devices, such as displays, various tunable optical components, and sensors, are becoming increasingly ubiquitous. Basic physical properties of liquid crystal materials can be controlled by external physical fields, thus making liquid crystal devices dynamically reconfigurable. The tunability of liquid crystals offers exciting opportunities for the development of new applications, including advanced electronic and photonic devices, by merging the concepts of flat optics, tunable metasurfaces, nanoplasmonics, and soft matter biophotonics. As a rule, the tunability of liquid crystals is achieved by applying an electric field. This field reorients liquid crystals and changes their physical properties. Ions, typically present in liquid crystals in minute quantities, can alter the reorientation of liquid crystals through the well-known screening effect. Because the electrical conductivity of thermotropic liquid crystals is normally caused by ions, an understanding of ion generation processes in liquid crystals is of utmost importance to existing and emerging technologies relying on such materials. That is why measuring of electrical conductivity of liquid crystals is a standard part of their material characterization. Measuring the electrical conductivity of liquid crystals is a very delicate process. In this paper, we discuss overlooked ionic phenomena caused by interactions of ions with substrates of the liquid crystal cells. These interactions affect the measured values of the DC electrical conductivity of liquid crystals and make them dependent on the cell thickness.


2021 ◽  
Vol 118 (42) ◽  
pp. e2111101118
Author(s):  
Xiuhu Zhao ◽  
Junchen Zhou ◽  
Jinxing Li ◽  
Junichi Kougo ◽  
Zhe Wan ◽  
...  

Recently, a type of ferroelectric nematic fluid has been discovered in liquid crystals in which the molecular polar nature at molecule level is amplified to macroscopic scales through a ferroelectric packing of rod-shaped molecules. Here, we report on the experimental proof of a polar chiral liquid matter state, dubbed helielectric nematic, stabilized by the local polar ordering coupled to the chiral helicity. This helielectric structure carries the polar vector rotating helically, analogous to the magnetic counterpart of helimagnet. The helielectric state can be retained down to room temperature and demonstrates gigantic dielectric and nonlinear optical responses. This matter state opens a new chapter for developing the diverse polar liquid crystal devices.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1199
Author(s):  
Kohki Takatoh ◽  
Masahiro Ito ◽  
Suguru Saito ◽  
Yuuta Takagi

This study proposed a new type of optical device with variable transmittance based on the incident angle direction. These devices consist of two liquid crystal devices (LCDs) with a half-wave plate between them. Hybrid aligned nematic (HAN)-type guest-host (GH) LCDs or GH-LCDs with antiparallel alignment of high pretilt angles were used. The use of a half-wave plate allowed for the control of the p- and s-waves. Using these devices, a wide range of transmittances were obtained because no polarizer was used. The newly proposed LCDs have a wide range of applications, including use on buildings, vehicles, and glasses.


Author(s):  
Andrés Márquez ◽  
Francisco J. Martínez-Guardiola ◽  
Marta Morales-Vidal ◽  
Daniel Puerto Garcia ◽  
Jorge Francés ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document