scholarly journals In silico evaluation of two mass spectrometry-based approaches for the identification of novel human leukocyte cell-surface proteins

2004 ◽  
Vol 77 (2) ◽  
pp. 190-198 ◽  
Author(s):  
I. C. Nicholson ◽  
M. Ayhan ◽  
N. J. Hoogenraad ◽  
H. Zola
2018 ◽  
Vol 115 (46) ◽  
pp. E10988-E10997 ◽  
Author(s):  
Damaris Bausch-Fluck ◽  
Ulrich Goldmann ◽  
Sebastian Müller ◽  
Marc van Oostrum ◽  
Maik Müller ◽  
...  

Cell-surface proteins are of great biomedical importance, as demonstrated by the fact that 66% of approved human drugs listed in the DrugBank database target a cell-surface protein. Despite this biomedical relevance, there has been no comprehensive assessment of the human surfaceome, and only a fraction of the predicted 5,000 human transmembrane proteins have been shown to be located at the plasma membrane. To enable analysis of the human surfaceome, we developed the surfaceome predictor SURFY, based on machine learning. As a training set, we used experimentally verified high-confidence cell-surface proteins from the Cell Surface Protein Atlas (CSPA) and trained a random forest classifier on 131 features per protein and, specifically, per topological domain. SURFY was used to predict a human surfaceome of 2,886 proteins with an accuracy of 93.5%, which shows excellent overlap with known cell-surface protein classes (i.e., receptors). In deposited mRNA data, we found that between 543 and 1,100 surfaceome genes were expressed in cancer cell lines and maximally 1,700 surfaceome genes were expressed in embryonic stem cells and derivative lines. Thus, the surfaceome diversity depends on cell type and appears to be more dynamic than the nonsurface proteome. To make the predicted surfaceome readily accessible to the research community, we provide visualization tools for intuitive interrogation (wlab.ethz.ch/surfaceome). The in silico surfaceome enables the filtering of data generated by multiomics screens and supports the elucidation of the surfaceome nanoscale organization.


2021 ◽  
Author(s):  
Anna Cioce ◽  
Beatriz Calle ◽  
Andrea Marchesi ◽  
Ganka Bineva-Todd ◽  
Helen Flynn ◽  
...  

Interactions between cells fundamentally impact biological processes. In cancer development, such interactions define key stages of disease that cannot be adequately recapitulated in cell monoculture. Complex co-culture studies have been key to unraveling the complexity of these processes, usually by sorting cells and transcriptome or bulk proteome analyses. However, these methods invariably lead to sample loss and do not capture aberrant glycosylation as an important corollary of cancer formation. Here, we report the development of Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped with a biosynthetic AND gate that uses bioorthogonally tagged sugars to generate glycosylation precursors. The cellular glycosylation machinery then introduces bioorthogonal tags into glycoproteins exclusively in cell lines expressing the enzymes of the biosynthetic AND gate. Modification with clickable reporter moieties allows for imaging or enrichment with mass spectrometry-proteomics in a cell-specific fashion. Making use of glycans as a property of most cell surface proteins, we use BOCTAG as an efficient means for cell-specific protein tracing.


2021 ◽  
Vol 123 ◽  
pp. 104688
Author(s):  
Nasrin Nazempour ◽  
Mohammad Hossein Taleqani ◽  
Navid Taheri ◽  
Amir Hossein Haji Ali Asgary Najafabadi ◽  
Alireza Shokrollahi ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Sarah Elschenbroich ◽  
Yunee Kim ◽  
Jeffrey A Medin ◽  
Thomas Kislinger

2007 ◽  
Vol 319 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
Alexander V. Filatov ◽  
Grigory I. Krotov ◽  
Victor G. Zgoda ◽  
Yuri Volkov

Author(s):  
Yunee Kim ◽  
Sarah Elschenbroich ◽  
Parveen Sharma ◽  
Lusia Sepiashvili ◽  
Anthony O. Gramolini ◽  
...  

Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Sign in / Sign up

Export Citation Format

Share Document