Architecture of the Earth

Geophysics ◽  
1939 ◽  
Vol 4 (1) ◽  
pp. 76-77
Author(s):  
A. P. Wendler

Daly’s earth model has a solid crystalline crust varying in thickness but not exceeding fifty miles. This crust encloses a continuous layer of vitreous rock, relatively thin, which rests on a denser vitreous material. The heavier substratum surrounds a so‐called “iron core” possibly crystallized by high pressures of the interior. This vitreous subcrust has some properties of a solid; hence, it behaves more or less like a rigid mass.

2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


Author(s):  
A. M. Dziewonski ◽  
D. L. Anderson
Keyword(s):  

2000 ◽  
Vol 180 ◽  
pp. 190-195
Author(s):  
J. Souchay

AbstractDespite the fact that the main causes of the differences between the observed Earth nutation and that derived from analytical calculations come from geophysical effects associated with nonrigidity (core flattening, core-mantle interactions, oceans, etc…), efforts have been made recently to compute the nutation of the Earth when it is considered to be a rigid body, giving birth to several “rigid Earth nutation models.” The reason for these efforts is that any coefficient of nutation for a realistic Earth (including effects due to nonrigidity) is calculated starting from a coefficient for a rigid-Earth model, using a frequency-dependent transfer function. Therefore it is important to achieve high quality in the determination of rigid-Earth nutation coefficients, in order to isolate the nonrigid effects still not well-modeled.After reviewing various rigid-Earth nutation models which have been established recently and their relative improvement with respect to older ones, we discuss their specifics and their degree of agreement.


2020 ◽  
Vol 91 (6) ◽  
pp. 3278-3285
Author(s):  
Baolong Zhang ◽  
Xiangfang Zeng ◽  
Jun Xie ◽  
Vernon F. Cormier

Abstract P ′ P ′ precursors have been used to detect discontinuities in the lower mantle of the Earth, but some seismic phases propagating along asymmetric ray paths or scattered waves could be misinterpreted as reflections from mantle discontinuities. By forward modeling in standard 1D Earth models, we demonstrate that the frequency content, slowness, and decay with distance of precursors about 180 s before P′P′ arrival are consistent with those of the PKPPdiff phase (or PdiffPKP) at epicentral distances around 78° rather than a reflection from a lower mantle interface. Furthermore, a beamforming technique applied to waveform data recorded at the USArray demonstrates that PKPPdiff can be commonly observed from numerous earthquakes. Hence, a reference 1D Earth model without lower mantle discontinuities can explain many of the observed P′P′ precursors signals if they are interpreted as PKPPdiff, instead of P′785P′. However, this study does not exclude the possibility of 785 km interface beneath the Africa. If this interface indeed exists, P′P′ precursors at distances around 78° would better not be used for its detection to avoid interference from PKPPdiff. Indeed, it could be detected with P′P′ precursors at epicentral distances less than 76° or with other seismic phases such as backscattered PKP·PKP waves.


2020 ◽  
Vol 224 (2) ◽  
pp. 1211-1224
Author(s):  
S Talavera-Soza ◽  
A Deuss

SUMMARY Radial modes, nS0, are long-period oscillations that describe the radial expansion and contraction of the whole Earth. They are characterized only by their centre frequency and quality factor Q, and provide crucial information about the 1-D structure of the Earth. Radial modes were last measured more than a decade ago using only one or two earthquakes. Here, we measure radial modes using 16 of the strongest and deepest earthquakes of the last two decades. By introducing more earthquake data into our measurements, we improve our knowledge of 1-D attenuation, as we remove potential earthquake bias from our results. For mode 0S0, which is dominated by compressional energy, we measure a Q value of 5982, much higher than previously measured, and requiring less bulk attenuation in the Earth than previously thought. We also show that radial modes cross-couple (resonate) strongly to their nearest spheroidal mode due to ellipticity and inner core cylindrical anisotropy. Cross-coupling improves the fit between data and synthetics, and gives better estimates of the centre frequency and attenuation value of the radial modes. Including cross-coupling in our measurements results in a systematic shift of the centre frequencies of radial modes towards the Preliminary Reference Earth Model. This shift in centre frequencies, has implications for the strength of the radial anisotropy present in the uppermost inner core, with our cross-coupling results agreeing with lower values of anisotropy than the ones inferred from just measuring the modes in self-coupling (isolation). Furthermore, cross-coupling between radial modes and angular-order two modes provides constraints on cylindrical inner core anisotropy, that will help us improve our knowledge of the 3-D structure of the inner core.


1862 ◽  
Vol 152 ◽  
pp. 621-638 ◽  

1. In a previous communication submitted to the Royal Society on June 28th, 1861, and since published in their Transactions, I ventured to make a suggestion regarding the nature of that connexion which subsists between magnetic disturbances, earth-currents, and auroras. In this hypothesis the earth was viewed as similar to the soft iron core of a Ruhmkorff’s machine, in which a primary disturbing current was supposed to induce mag­netism. Earth-currents and auroras, on the other hand, were viewed as induced or secondary currents, caused by the small but abrupt changes which are constantly taking place in the strength of the primary disturbing current, these changes being very much heightened in effect by the action of the iron core, that is to say, of the earth.


The aim of this review is to bring together and relate recent progress in three subjects - the internal structure of the Earth, the behaviour of materials at very high pressures and the dynamical properties of the planets. Knowledge of the internal structure of the Earth has been advanced in recent years, particularly by observations of free oscillations of the whole Earth excited by the very largest earthquakes; as a consequence, it is clear that K. E. Bullen’s hypothesis that bulk modulus is a smooth function of pressure irrespective of composition is close to the truth for the Earth. Understanding of the behaviour of materials at very high pressure has increased as a result both of experiments on the propagation of shock waves and of theoretical investigations along a number of lines and it can now be seen that Bullen’s hypothesis is not true irrespective of chemical composition and crystal structure but that it happens to apply to the Earth because of particular circumstances. Studies of the orbits of artificial satellites and space probes have led to better knowledge of the dynamics of the Moon, Mars and Venus, and there have also been recent improvements in the traditional studies of Uranus and Neptune. Our knowledge of the dynamics of the planets is on the whole rather restricted, and Bullen’s hypothesis only applies directly to the Moon (for which the application is trivial) and possibly to Mars; the dynamical properties do none the less set fairly restrictive limits to the models that can be constructed for other planets. It would be possible for all planets to have cores of similar composition to the Earth ’s, surrounded by mantles of different sorts, silicates for the terrestrial planets and mostly hydrogen for Jupiter, Saturn, Uranus and Neptune.


1998 ◽  
Author(s):  
Joe Stefani ◽  
Bob Shank ◽  
David C. Bartel ◽  
William L. Abriel
Keyword(s):  

2013 ◽  
Vol 753-755 ◽  
pp. 1324-1327
Author(s):  
Jia Qiang Dong

The visual and simulated system of the orbiting satellite based on the OpenGL technology is designed and realized in this paper, in which a visualization platform of the satellite in-orbit running is constructed. The simulation system has constructed the satellite model and the earth model by making use of 3DS MAX technology, and achieved the visualization of satellite in-orbit-running, the visualization of the communication route and of the overlay effect. At the same time, which has realized the access to the database of the orbiting satellite by means of ADO technology .The practices have proven that the system can simulate the whole process of satellite in-orbit-running in real-time, and provides the assistant support platform of the real-time management and decision. Apart from this, the system provides the network training of the space forces with virtual training platform. It is of great significance to construct the virtual battlefield simulation system.


Sign in / Sign up

Export Citation Format

Share Document