scholarly journals Electromagnetic induction in an inhomogeneous conductive thin sheet

Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1677-1688 ◽  
Author(s):  
Richard S. Smith ◽  
G. F. West

Distinguishing between the electromagnetic (EM) response of a subsurface conductor and the EM response of an overburden whose conductivity and/or thickness varies laterally requires a capability to calculate the EM response of both types of conductor. While methods for calculating the response of some simple subsurface conductors such as dipping rectangular sheets are already available, methods for computing the response of an irregular overburden are not common. Using Price’s analysis, we have formulated two numerical techniques for calculating the response of a laterally varying overburden which is thin and flat, and which lies on a perfectly resistive subspace. The first technique is a frequency‐domain method in which a large matrix equation is solved to find the horizontal‐wavenumber components of the secondary vertical magnetic field. The method is best suited to calculating the response of the overburden when the EM source and receiver are located above the sheet, such as in airborne EM systems. Helicopter EM profiles calculated using this technique have been checked against a simple scale model. The second method calculates the time‐domain step response of the overburden by time‐stepping the vertical component of the magnetic field. The method is suitable for calculating the response of the overburden when the EM source is a large transmitter loop close to the overburden. Using the time‐domain method to investigate the response of simple conductance structures illustrates that the zero crossing of the vertical magnetic field moves more slowly across conductive regions than across resistive regions. This is because the rate of decay of the vertical field in a region varies in proportion to the resistance of the region. A response profile from a UTEM survey shows a response that could be interpreted as due to a dipping subsurface conductor. This response has been modeled using the time‐domain method, and a geologically acceptable pattern of lateral variations in the overburden conductance yields a response close to the measured EM response. Thus, a subsurface conductor need not lie below the profile line to explain the response.

1982 ◽  
Vol 242 (2) ◽  
pp. H197-H202 ◽  
Author(s):  
J. P. Dujardin ◽  
D. N. Stone ◽  
C. D. Forcino ◽  
L. T. Paul ◽  
H. P. Pieper

Experiments were performed on eight anesthetized dogs to study the response of the characteristic impedance (Zc) of the main pulmonary artery to changes in circulating blood volume. Pressure and flow were measured in the proximal main pulmonary artery under control conditions, after hemorrhage (-15% of the estimated blood volume), again under control conditions, and finally after volume expansion (+30% of the estimated blood volume). Two different methods were used to determine Zc from these recordings. With the frequency-domain method values for Zc were obtained by averaging the input impedance moduli between 2 and 15 Hz. With the time-domain method Zc was derived as the slope of the early ejection pressure-flow relationship. The values for Zc obtained with the two methods were not statistically different. In the time-domain method the average increase in Zc with hemorrhage was 30.7 +/- 7.4 (SE) %, and the average decrease with volume expansion was -21.1 +/- 5.0 (SE) %. Because the time-domain method allowed the values of Zc during control conditions and after hemorrhage to be obtained in the same pressure range, it was concluded that the observed changes were caused by a change in the activity of the smooth muscle in the pulmonary arterial wall. Similarly, it was concluded that the decrease in Zc after volume expansion was active in nature.


Author(s):  
Ziying Wu ◽  
Hongzhao Liu ◽  
Lilan Liu ◽  
Pengfei Li ◽  
Daning Yuan

This paper describes two approaches for the simultaneous identification of the coulomb and viscous parameters in kinematical joints. One is a time-domain method (TDM) and the other is a frequency-domain method (FDM). Simulation shows that both of the two methods have good performances in identifying friction at high SNR (90dB). But at low SNR (20dB), the estimation accuracy of the frequency-domain method is higher than that of the time-domain method. A field experiment employing a linkage mechanism driven by motor is also carried out. The experimental results obtained by the two approaches are almost identical under different experiment conditions. It has been concluded that the presented identification methods of friction in kinematical joints are correct and applicable.


2012 ◽  
Vol 253-255 ◽  
pp. 720-723
Author(s):  
Mao Xing Wei ◽  
Zhi Gang Bai

The present frequency domain method of calculating wave power may not be accurate enough for calculating the incident wave power of a specific site, which is primary measurement for evaluating the efficiency of wave energy converters (WECs) and an alternative measure, the time domain method, is proposed. Three sites including two nearshore sites and one deepwater site at Chengshantou sea area were selected, and a sample wave parameters data set was obtained from wave model SWASH to demonstrate the application of these two methods. A comparison of the results of each method was also performed and two influential parameters used in calculation were analyzed. The results show that frequency domain method is very likely to overestimate the wave power at both deepwater and nearshore site. The time domain method proposed in this paper is believed to be more superior in calculating the incident wave power during a short term.


2020 ◽  
Vol 91 (5) ◽  
pp. 2872-2880 ◽  
Author(s):  
Felix Bernauer ◽  
Joachim Wassermann ◽  
Heiner Igel

Abstract Inertial sensors like seismometers or accelerometers are sensitive to tilt motions. In general, from pure acceleration measurements, it is not possible to separate the tilt acceleration from the translational ground acceleration. This can lead to severe misinterpretation of seismograms. Here, we present three different methods that can help solving this problem by correcting translational records for dynamic tilt induced by ground deformation with direct measurements of rotational motions: (1) a simple time-domain method, (2) a frequency-domain method proposed by Crawford and Webb (2000) using a coherence-weighted transfer function between rotation and acceleration, and (3) an adapted frequency-domain method that corrects only those parts of the spectrum with coherence between translational acceleration and rotation angle higher than 0.5. These three methods are discussed in three different experimental settings: (1) a reproducible and precisely known laboratory test using a high-precision tilt table, (2) a synthetic test with a simulated volcanic very-long-period event, and (3) a real data set recorded during the 2018 Mt. Kīlauea caldera collapse. All the three test cases show severe influence of tilt motion on the acceleration measurements. The time-domain method and the adapted frequency-domain method show very similar performance in all three test cases. Those two methods are able to remove the tilt component reliably from the acceleration record.


2001 ◽  
Vol 38 (A) ◽  
pp. 274-288 ◽  
Author(s):  
Xiaogu Zheng ◽  
James Renwick

The advantages and limitations of frequency domain and time domain methods for estimating the interannual variability arising from day-to-day weather events are summarized. A modification of the time domain method is developed and its application in examining a precondition for the frequency domain method is demonstrated. A combined estimation procedure is proposed: it takes advantage of the strengths of both methods. The estimation procedures are tested with sets of synthetic data and are applied to long time series of three meteorological parameters. The impacts of the different methods on tests of potential long-range predictability for seasonal means are also discussed.


Author(s):  
Jia Liu ◽  
Jianhua Wu ◽  
Zhenhua Xiong ◽  
Xiangyang Zhu

In servo systems, the dynamic characteristics may not only differ between axes but may also vary with moving directions for a single axis. The direction dependent characteristics would result in additional tracking or positioning error and degrade the performance of the system. In this paper, relay feedback tests are successfully applied to identify the dynamic characteristics in servo systems. A time-domain method is used to analyze the relay feedback other than the conventional describing function (DF) method. The time-domain method utilizes the same oscillation parameters (oscillation amplitude and half period) as the DF method for system identification. However, the time-domain method takes several advantages: First, the direction dependent characteristics of the system can be properly revealed; second, no approximation is made in this method, so that the exact expressions of the amplitudes and the periods of the limit cycles under relay feedback can be derived. A feedforward compensator is then designed using the estimated values of the system parameters. Simulation results show that the identification results through the time-domain method are more accurate than the DF method and are more robust under different relay parameters. Real time experiments show that the feedforward compensator designed by the proposed method compensates disturbances related to the direction and hence improves the tracking and positioning performance of the servo system.


2011 ◽  
Vol 1 ◽  
pp. 221-225
Author(s):  
Zhi Wei Lin ◽  
Li Da ◽  
Hao Wang ◽  
Wei Han ◽  
Fan Lin

The real-time pitch shifting process is widely used in various types of music production. The pitch shifting technology can be divided into two major types, the time domain type and the frequency domain type. Compared with the time domain method, the frequency domain method has the advantage of large shifting scale, low total cost of computing and the more flexibility of the algorithm. However, the use of Fourier Transform in frequency domain processing leads to the inevitable inherent frequency leakage effects which decrease the accuracy of the pitch shifting effect. In order to restrain the side effect of Fourier Transform, window functions are used to fall down the spectrum-aliasing. In practical processing, Haimming Window and Blackman Window are frequently used. In this paper, we compare both the effect of the two window functions in the restraint of frequency leakage and the performance and accuracy in subjective based on the traditional phase vocoder[1]. Experiment shows that Haimming Window is generally better than Blackman Window in pitch shifting process.


2020 ◽  
Vol 37 (9) ◽  
pp. 1669-1680
Author(s):  
Shashank S. Joshil ◽  
Cuong M. Nguyen ◽  
V. Chandrasekar ◽  
J. Christine Chiu ◽  
Yann Blanchard

AbstractThe ability to separate cloud and drizzle returns in active remote sensing observations is important for understanding the microphysics of clouds and precipitation. Yet, robust separations remain challenging in radar remote sensing. Prior methods for cloud and drizzle separation for radar observations use the properties of the Doppler spectra such as skewness. However, these methods have challenges when the drizzle becomes dominant in the observation volume. This paper presents a parametric time domain method (PTDM) that separates cloud and drizzle using the Doppler spectra measurements without assuming any prior properties of cloud and drizzle. The advantage of PTDM is that it can estimate the signal properties in the time domain and can obtain the cloud and drizzle estimates simultaneously. Based on our radar signal simulations, the uncertainty in estimated power and velocity from PTDM are within 2 dB and 0.02 m s−1, respectively. We have also evaluated the PTDM algorithm using observations from the Atmospheric Radiation Measurement (ARM) Program W-band cloud radar in the Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP-MBL) campaign at the Azores in 2009–10. Two cases corresponding to light and moderate drizzling conditions are considered for the study. The statistics of the estimates obtained show that the PTDM method performs well in separating the cloud and drizzle returns. Finally, the estimated cloud and drizzle reflectivity from PTDM were used to retrieve their corresponding microphysical properties, showing that the retrieved liquid water path agrees to 25 g m−2 with the benchmark microwave method.


Sign in / Sign up

Export Citation Format

Share Document