Triangle Ranch Headquarters field development using shallow core holes and high‐resolution seismic data

Geophysics ◽  
1989 ◽  
Vol 54 (11) ◽  
pp. 1384-1396
Author(s):  
Howard Renick ◽  
R. D. Gunn

The Triangle Ranch Headquarters Canyon Reef field is long and narrow and in an area where near‐surface evaporites and associated collapse features degrade seismic data quality and interpretational reliability. Below this disturbed section, the structure of rocks is similar to the deeper Canyon Reef structure. The shallow structure exhibits very gentle relief and can be mapped by drilling shallow holes on a broad grid. The shallow structural interpretation provides a valuable reference datum for mapping, as well as providing a basis for planning a seismic program. By computing an isopach between the variable seismic datum and the Canyon Reef reflection and subtracting the isopach map from the datum map, we map Canyon Reef structure. The datum map is extrapolated from the shallow core holes. In the area, near‐surface complexities produce seismic noise and severe static variations. The crux of the exploration problem is to balance seismic signal‐to‐noise ratio and geologic resolution. Adequate geologic resolution is impossible without understanding the exploration target. As we understood the target better, we modified our seismic acquisition parameters. Studying examples of data with high signal‐to‐noise ratio and poor resolution and examples of better defined structure on apparently noisier data led us to design an acquisition program for resolution and to reduce noise with arithmetic processes that do not reduce structural resolution. Combining acquisition and processing parameters for optimum structural resolution with the isopach mapping method has improved wildcat success from about 1 in 20 to better than 1 in 2. It has also enabled an 80 percent development drilling success ratio as opposed to slightly over 50 percent in all previous drilling.

2021 ◽  
Vol 18 (6) ◽  
pp. 890-907
Author(s):  
Andrey Bakulin ◽  
Ilya Silvestrov ◽  
Maxim Protasov

Abstract Modern land seismic data are typically acquired using high spatial trace density with small source and receiver arrays or point sources and sensors. These datasets are challenging to process due to their massive size and relatively low signal-to-noise ratio caused by scattered near-surface noise. Therefore, prestack data enhancement becomes a critical step in the processing flow. Nonlinear beamforming had proved very powerful for 3D land data. However, it requires computationally intensive estimations of local coherency on dense spatial/temporal grids in 3D prestack data cubes. We present an analysis of various estimation methods focusing on a trade-off between computational efficiency and enhanced data quality. We demonstrate that the popular sequential «2 + 2 + 1» scheme is highly efficient but may lead to unreliable estimation and poor enhancement for data with a low signal-to-noise ratio. We propose an alternative algorithm called «dip + curvatures» that remains stable for such challenging data. We supplement the new strategy with an additional interpolation procedure in spatial and time dimensions to reduce the computational cost. We demonstrate that the «dip + curvatures» strategy coupled with an interpolation scheme approaches the «2 + 2 + 1» method's efficiency while it significantly outperforms it in enhanced data quality. We conclude that the new algorithm strikes a practical trade-off between the performance of the algorithm and the quality of the enhanced data. These conclusions are supported by synthetic and real 3D land seismic data from challenging desert environments with complex near surface.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Ming Yan ◽  
Simon Holzner ◽  
Theodor W. Hänsch ◽  
Nathalie Picqué

2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


2006 ◽  
Author(s):  
Stanley Wissmar ◽  
Linda Höglund ◽  
Jan Andersson ◽  
Christian Vieider ◽  
Susan Savage ◽  
...  

2001 ◽  
Author(s):  
P.P. Gupta ◽  
Kuldeep Prakash ◽  
Paramjeet Singh ◽  
M.N. Lakra

Sign in / Sign up

Export Citation Format

Share Document