A new approach to modeling the electromagnetic response of conductive media

Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1180-1192 ◽  
Author(s):  
K. H. Lee ◽  
G. Liu ◽  
H. F. Morrison

We introduce a new and potentially useful method for computing electromagnetic (EM) responses of arbitrary conductivity distributions in the earth. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. We show that this integral transform can be extended to include vector fields. Our algorithm takes advantage of this relationship between the wave field and the actual EM field. Specifically, numerical computation is carried out for the wave field, and the result is transformed back to the EM field in the time domain. The proposed approach has been successfully demonstrated using two‐dimensional (2‐D) models. The appropriate TE‐mode diffusion equation in the time domain for the electric field is initially transformed into a scalar wave equation in an imaginary q domain, where q is a time‐like variable. The corresponding scalar wave field is computed numerically using an explicit q‐stepping technique. Standard finite‐difference methods are used to approximate the fields, and absorbing boundary conditions are implemented. The computed wave field is then transformed back to the time domain. The result agrees fairly well with the solution computed directly in the time domain. We also present an approach for general three‐dimensional (3‐D) EM problems for future studies. In this approach, Maxwell’s equations in the time domain are first transformed into a system of coupled first‐order wave equations in the q domain. These coupled equations are slightly modified and then cast into a “symmetric” and “divergence‐free” form. We show that it is to this particular form of equations that numerical schemes developed for solving wave equations can be applied efficiently.

Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 537-548 ◽  
Author(s):  
Jose M. Carcione

Rocks are far from being isotropic and elastic. Such simplifications in modeling the seismic response of real geological structures may lead to misinterpretations, or even worse, to overlooking useful information. It is useless to develop highly accurate modeling algorithms or to naively use amplitude information in inversion processes if the stress‐strain relations are based on simplified rheologies. Thus, an accurate description of wave propagation requires a rheology that accounts for the anisotropic and anelastic behavior of rocks. This work presents a new constitutive relation and the corresponding time‐domain wave equation to model wave propagation in inhomogeneous anisotropic and dissipative media. The rheological equation includes the generalized Hooke’s law and Boltzmann’s superposition principle to account for anelasticity. The attenuation properties in different directions, associated with the principal axes of the medium, are controlled by four relaxation functions of viscoelastic type. A dissipation model that is consistent with rock properties is the general standard linear solid. This is based on a spectrum of relaxation mechanisms and is suitable for wavefield calculations in the time domain. One relaxation function describes the anelastic properties of the quasi‐dilatational mode and the other three model the anelastic properties of the shear modes. The convolutional relations are avoided by introducing memory variables, six for each dissipation mechanism in the 3-D case, two for the generalized SH‐wave equation, and three for the qP − qSV wave equation. Two‐dimensional wave equations apply to monoclinic and higher symmetries. A plane analysis derives expressions for the phase velocity, slowness, attenuation factor, quality factor and energy velocity (wavefront) for homogeneous viscoelastic waves. The analysis shows that the directional properties of the attenuation strongly depend on the values of the elasticities. In addition, the displacement formulation of the 3-D wave equation is solved in the time domain by a spectral technique based on the Fourier method. The examples show simulations in a transversely‐isotropic clayshale and phenolic (orthorhombic symmetry).


2017 ◽  
Vol 08 (03n04) ◽  
pp. 1750007
Author(s):  
Pooneh Maghoul ◽  
Behrouz Gatmiri

This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements [Formula: see text], water pressure [Formula: see text] and air pressure [Formula: see text] are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic [Formula: see text] theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretizations. Thereafter, the BE formulation is implemented in a 2D boundary element code (PORO-BEM) for the numerical solution. To verify the accuracy of this implementation, the displacement response obtained by the boundary element formulation is verified by comparison with the elastodynamics problem.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. T301-T311 ◽  
Author(s):  
Xiao Ma ◽  
Dinghui Yang ◽  
Xueyuan Huang ◽  
Yanjie Zhou

The absorbing boundary condition plays an important role in seismic wave modeling. The perfectly matched layer (PML) boundary condition has been established as one of the most effective and prevalent absorbing boundary conditions. Among the existing PML-type conditions, the complex frequency shift (CFS) PML attracts considerable attention because it can handle the evanescent and grazing waves better. For solving the resultant CFS-PML equation in the time domain, one effective technique is to apply convolution operations, which forms the so-called convolutional PML (CPML). We have developed the corresponding CPML conditions with nonconstant grid compression parameter, and used its combination algorithms specifically with the symplectic partitioned Runge-Kutta and the nearly analytic SPRK methods for solving second-order seismic wave equations. This involves evaluating second-order spatial derivatives with respect to the complex stretching coordinates at the noninteger time layer. Meanwhile, two kinds of simplification algorithms are proposed to compute the composite convolutions terms contained therein.


2021 ◽  
Vol 8 ◽  
pp. 57-68
Author(s):  
R.Yu. Borodulin ◽  
N.O. Lukyanov

Problem statement. The accuracy and convergence of calculations for solving problems of electrodynamics by the finite difference method in the time domain significantly depends on the correct choice of parameters and the correct setting of the absorbing boundary conditions (ABC). Two main types of absorbing boundary conditions are known: Mur ABC; Beranger ABC. It is believed that the Mur ABC is less effective at absorbing spherical waves than the Beranger ABC, but they do not require the introduction of additional parameters (the so-called "Beranger fields"), which simplifies the implementation of program code and saves computer RAM. Calculations have shown that the efficiency of the Mur ABC will depend on their thickness. On the one hand, an increase in the thickness of the ABC layers will lead to an increase in the accuracy of calculations, on the other hand, to an increase in the size of the calculation area and, as a result, an increase in RAM. The problem arises of determining the criterion for evaluating the efficiency of ABC to determine their optimal thickness. Goal. Identification of new factors that make it possible to use the Mur ABC as efficiently as the Beranger ABC, while significantly saving computer resources. Result. The expressions for the ABC are presented, taking into account the interaction of all components of the electromagnetic field within a single cell of the FDTD. Calculations of the reflection coefficient – a criterion for evaluating the efficiency of the ABC, are presented. Practical significance. Calculations are presented that allow automating the selection of ABC parameters for their stable operation in solving electrodynamic problems.


2009 ◽  
Vol 17 (02) ◽  
pp. 211-218
Author(s):  
GEORGIOS NATSIOPOULOS

In this short note alternative time domain boundary integral equations (TDBIE) for the scalar wave equation are formulated on a surface enclosing a volume. The technique used follows the traditional approach of subtracting and adding back relevant Taylor expansion terms of the field variable, but does not restrict this to the surface patches that contain the singularity only. From the divergence-free property of the added-back integrands, together with an application of Stokes' theorem, it follows that the added-back terms can be evaluated using line integrals defined on a cut between the surface and a sphere whose radius increases with time. Moreover, after a certain time, the line integrals may be evaluated directly. The results provide additional insight into the theoretical formulations, and might be used to improve numerical implementations in terms of stability and accuracy.


Sign in / Sign up

Export Citation Format

Share Document