Implicit static corrections in prestack migration of common‐source data

Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 757-760 ◽  
Author(s):  
G. A. McMechan ◽  
H. W. Chen

Static effects due to surface topography and near‐surface velocity variations may be accurately compensated for, in an implicit way, during prestack reverse‐time migration of common‐source gathers, obviating the need for explicit static corrections. Receiver statics are incorporated by extrapolating the observed data from the actual recorder positions; source statics are incorporated by computing the excitation‐time imaging conditions from the actual source positions.

Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Geophysics ◽  
1991 ◽  
Vol 56 (3) ◽  
pp. 378-381 ◽  
Author(s):  
D. Loewenthal ◽  
Liang‐zie Hu

This note addresses two methods of computing the imaging condition for prestack migration of common‐shot seismic data; our work is based on the ideas from reverse‐time migration for both poststack (Loewenthal and Mufti, 1983; McMechan, 1983) and prestack data (Chang and McMechan, 1986). In reverse‐time migration of poststack data, the whole stacked section is backward‐extrapolated in time, with half of the medium velocity to time zero. All exploding reflectors are imaged at once at time zero. The time zero is referred to as the imaging condition. In prestack migration, the imaging condition is more involved. Each spatial grid point (treated as a point diffractor) has a different excitation time, which is equal to the one‐way traveltime from the source to that grid point. Each point diffractor is imaged separately at its excitation (the “imaging time”).


Geophysics ◽  
1988 ◽  
Vol 53 (8) ◽  
pp. 1015-1023 ◽  
Author(s):  
Liang‐Zie Hu ◽  
George A. McMechan ◽  
Jerry M. Harris

Subsurface imaging with common‐source cross‐hole data can be achieved using prestack reverse‐time migration. The algorithm consists of extrapolation of the recorded wave field, application of the excitation‐time imaging condition, and postprocessing of the resulting image with a low‐pass wavenumber filter. The wavenumber filter removes the artifact associated with the direct arrival; this artifact is not separable from the scattered data before migration because, in the cross‐hole geometry, they significantly overlap in time, space, and wavenumber. Migration of synthetic data produces the best possible results, but images produced by migration of scale‐model data are not greatly inferior. Apparently, acceptable images can be obtained from a surprisingly few sources, if these sources are located sufficiently far apart to give independent information and the recording aperture is sufficiently wide.


2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. S241-S250 ◽  
Author(s):  
Yi Luo ◽  
Qinglin Liu ◽  
Yuchun E. Wang ◽  
Mohammed N. AlFaraj

We illustrate the use of mode-converted transmitted (e.g., PS- or SP-) waves in vertical seismic profiling (VSP) data for imaging areas above receivers where reflected waves cannot illuminate. Three depth-domain imaging techniques — move-out correction, common-depth-point (CDP) mapping, and prestack migration — are described and used for imag-ing the transmitted waves. Moveout correction converts an offset VSP trace into a zero-offset trace. CDP mapping maps each sample on an input trace to the location where the mode conversion occurs. For complex media, prestack migration (e.g., reverse-time migration) is used. By using both synthetic and field VSP data, we demonstrate that images derived from transmissions complement those from reflections. As an important application, we show that transmitted waves can illuminate zones above highly de-viated or horizontal wells, a region not imaged by reflection data. Because all of these benefits are obtained without extra data acquisition cost, we believe transmission imag-ing techniques will become widely adopted by the oil in-dustry.


Geophysics ◽  
2021 ◽  
pp. 1-42
Author(s):  
Yike Liu ◽  
Yanbao Zhang ◽  
Yingcai Zheng

Multiples follow long paths and carry more information on the subsurface than primary reflections, making them particularly useful for imaging. However, seismic migration using multiples can generate crosstalk artifacts in the resulting images because multiples of different orders interfere with each others, and crosstalk artifacts greatly degrade the quality of an image. We propose to form a supergather by applying phase-encoding functions to image multiples and stacking several encoded controlled-order multiples. The multiples are separated into different orders using multiple decomposition strategies. The method is referred to as the phase-encoded migration of all-order multiples (PEM). The new migration can be performed by applying only two finite-difference solutions to the wave equation. The solutions include backward-extrapolating the blended virtual receiver data and forward-propagating the summed virtual source data. The proposed approach can significantly attenuate crosstalk artifacts and also significantly reduce computational costs. Numerical examples demonstrate that the PEM can remove relatively strong crosstalk artifacts generated by multiples and is a promising approach for imaging subsurface targets.


Geophysics ◽  
1987 ◽  
Vol 52 (10) ◽  
pp. 1365-1375 ◽  
Author(s):  
Wen‐Fong Chang ◽  
George A. McMechan

Elastic, prestack, reverse‐time, finite‐difference migration of two‐component seismic surface data requires data extrapolation and application of an imaging condition. Data extrapolation involves synchronous driving of the vertical‐component and horizontal‐component finite‐difference meshes with the time reverse of the recorded vertical and horizontal traces, respectively. Extrapolation uses the coupled elastic wave equation for variable velocity solved with a second‐order, explicit finite‐difference scheme. The imaging condition at any point in the grid is the one‐way traveltime from the source to that point. Elastic migrations of both synthetic test data and real two‐component common‐source gathers produce simpler images than acoustic migrations because of the coalescing of double reflections (compressional waves and shear waves) into single loci.


2019 ◽  
Author(s):  
Ghada Sindi ◽  
Tariq Alkhalifah ◽  
Tong Fei ◽  
Yi Luo

Sign in / Sign up

Export Citation Format

Share Document