Moving‐window Poisson analysis of gravity and magnetic data from the Penokean orogen, east‐central Minnesota

Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Val W. Chandler ◽  
Kelley Carlson Malek

Analytical correlation of gravity and magnetic data through moving‐window application of Poisson's theorem is useful in studying the complex Precambrian geology of central Minnesota. Linear regression between the two data sets at each window position yields correlation, intercept, and slope parameters that quantitatively describe the relationship between the gravity and magnetic data and, in the case of the slope parameter, are often accurate estimates of magnetizatons‐to‐density ratios (MDR) of anomalous sources. In this study, gridded gravity and magnetic data from a 217.6 × 217.6 km area in central Minnesota were analyzed using a 8.5 × 8.5 km window. The study area includes part of the Early Proterozoic Penokean orogen and an Archean greenstone‐granite terrane of the Superior Province. The parameters derived by the moving‐window analysis show striking relationships to many geologic features, and many of the MDR estimates agree with rock property data. Inversely related gravity and magnetic anomalies are a characteristic trait of the Superior Province, but moving‐window analysis reveals that direct relationships occur locally. In the Penokean fold‐and‐thrust belt, gravity and magnetic highs over the Cuyuna range produce a prominent belt of large MDR estimates, which reflect highly deformed troughs of iron‐formation and other supracrustal rocks. This belt can be traced northeastward to sources that are buried by 3–5 km of Early Proterozoic strata in the Animikie basin. This configuration, in conjunction with recent geologic studies, indicates that the Animikie strata, which may represent foreland basin deposits associated with the Penokean orogen, unconformably overlie parts of the fold‐and‐thrust belt, and that earlier stratigraphic correlations between Cuyuna and Animikie strata are wrong. The results of this study indicate that moving‐window Poisson analysis is useful in the study of Precambrian terranes.

1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Nicole Debeglia ◽  
Jacques Corpel

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.


1977 ◽  
Vol 67 (3) ◽  
pp. 735-750
Author(s):  
Kin-Yip Chun ◽  
Toshikatsu Yoshii

abstract Group velocities of fundamental-mode Rayleigh and Love waves are analyzed to construct a crustal structure of the Tibetan Plateau. A moving window analysis is employed to compute group velocities in a wide period range of 7 to 100 sec for 17 individual paths. The crustal models derived from these dispersion data indicate that under the Tibetan Plateau the total crustal thickness is about 70 km and that the crustal velocities are generally low. The low velocities are most probably caused by high temperatures. A low-velocity zone located at an intermediate depth within the crust appears to be strongly demanded by the observed dispersion data. The main features of the proposed crustal structure will place stringent constraints on future tectonic models of the Tibetan Plateau which is generally regarded as a region of active deformation due to the continent-continent collision between India and Asia.


Sign in / Sign up

Export Citation Format

Share Document