Crustal structure of the Tibetan Plateau: A surface-wave study by a moving window analysis

1977 ◽  
Vol 67 (3) ◽  
pp. 735-750
Author(s):  
Kin-Yip Chun ◽  
Toshikatsu Yoshii

abstract Group velocities of fundamental-mode Rayleigh and Love waves are analyzed to construct a crustal structure of the Tibetan Plateau. A moving window analysis is employed to compute group velocities in a wide period range of 7 to 100 sec for 17 individual paths. The crustal models derived from these dispersion data indicate that under the Tibetan Plateau the total crustal thickness is about 70 km and that the crustal velocities are generally low. The low velocities are most probably caused by high temperatures. A low-velocity zone located at an intermediate depth within the crust appears to be strongly demanded by the observed dispersion data. The main features of the proposed crustal structure will place stringent constraints on future tectonic models of the Tibetan Plateau which is generally regarded as a region of active deformation due to the continent-continent collision between India and Asia.

1995 ◽  
Vol 85 (6) ◽  
pp. 1531-1540 ◽  
Author(s):  
Lupei Zhu ◽  
Thomas J. Owens ◽  
George E. Randall

Abstract We investigate lateral variations in crustal structure across the northern boundary of the Tibetan Plateau using the receiver functions at three broadband stations deployed during the 1991-1992 Tibet PASSCAL experiment. The first 5 sec of the receiver functions vary systematically with backazimuth: the radial receiver functions are symmetric across the N-S axis while the tangential receiver functions are antisymmetric across this axis. This symmetry can be modeled by E-W striking dipping interfaces in the upper-middle crust. The strike direction is consistent with the E-W trend of surface geology. Modeling a P-to-S converted phase in the receiver functions at each station suggests that there is a mid-crustal low-velocity layer with its upper boundary dipping 20° to 30° to the south. In addition, a shallow northward-dipping interface is responsible for the “double-peaked” direct P arrivals in the radial receiver functions and large tangential motions at one of the stations. The low-velocity layer, together with other geological and seismological observations, suggests that there is a hot, possibly partial melt zone in the middle crust of northern Tibet. Alternately, dipping velocity interfaces might be associated with some buried thrust faults in the upper crust that accommodated crust shortening during the plateau formation.


1975 ◽  
Vol 65 (5) ◽  
pp. 1051-1057 ◽  
Author(s):  
W. P. Chen ◽  
P. Molnar

Abstract Well-dispersed Rayleigh waves within the period range of 4 to 11 sec are observed at New Delhi (NDI) and Shillong (SHL), India, for seven earthquakes near and in the Tibetan Plateau from 1963 to 1971. The dispersion curves and the simply dispersed wave forms suggest a prominent overlying wave guide, probably sediments, in the Tibetan area. The thickness of such sediments is most likely between 2.5 and 7.0 km. The simple wave trains, without much distortion due to multipathing, are consistent with a relatively inert, recent tectonism in Tibet.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Stewart D. McLachlin ◽  
Louis M. Ferreira ◽  
Cynthia E. Dunning

Finite helical axes (FHAs) are a potentially effective tool for joint kinematic analysis. Unfortunately, no straightforward guidelines exist for calculating accurate FHAs using prepackaged six degree-of-freedom (6DOF) rigid body trackers. Thus, this study aimed to: (1) describe a protocol for calculating FHA parameters from 6DOF rigid body trackers using the screw matrix and (2) to maximize the number of accurate FHAs generated from a given data set using a moving window analysis. Four Optotrak® Smart Markers were used as the rigid body trackers, two moving and two fixed, at different distances from the hinge joint of a custom-machined jig. 6DOF pose information was generated from 51 static positions of the jig rotated and fixed in 0.5 deg increments up to 25 deg. Output metrics included the FHA direction cosines, the rotation about the FHA, the translation along the axis, and the intercept of the FHA with the plane normal to the jig's hinge joint. FHA metrics were calculated using the relative tracker rotation from the starting position, and using a moving window analysis to define a minimum acceptable rotational displacement between the moving tracker data points. Data analysis found all FHA rotations calculated from the starting position were within 0.15 deg of the prescribed jig rotation. FHA intercepts were most stable when determined using trackers closest to the hinge axis. Increasing the moving window size improved the FHA direction cosines and center of rotation accuracy. Window sizes larger than 2 deg had an intercept deviation of less than 1 mm. Furthermore, compared to the 0 deg window size, the 2 deg window had a 90% improvement in FHA intercept precision while generating almost an equivalent number of FHA axes. This work identified a solution to improve FHA calculations for biomechanical researchers looking to describe changes in 3D joint motion.


1969 ◽  
Vol 59 (1) ◽  
pp. 331-346
Author(s):  
David M. Boore ◽  
M. Nafi Toksöz

Abstract A feasibility study was made concerning the use of the ellipticity of the Rayleigh wave particle motion for determining earth structures. Variational parameters were computed empirically for both the ellipticity and phase velocity of Rayleigh waves in the period range T = 10-50 seconds. It was found that, in general, the ellipticity and phase velocity are about equally sensitive to structural perturbations, but that near-surface low-velocity sedimentary layers influence the ellipticity much more strongly than they do the phase velocity. Anelasticity has a minor effect on the ellipticity, whereas the presence of interfering waves can have a significant influence. A test of the independence between ellipticity and phase velocity indicated that in our period range ellipticity does contribute independent information, and thus provides an additional constraint toward uniqueness. Using data from LASA, both ellipticity and Rayleigh- and Love-wave phase velocities were measured and the results interpreted in terms of a crustal structure. The ellipticity data proved useful when combined with the phase velocity and some structures that fit the phase velocity data could be rejected on the basis of ellipticity.


1975 ◽  
Vol 65 (2) ◽  
pp. 507-521
Author(s):  
Harsh K. Gupta ◽  
Kazuo Hamada

abstract Group velocities for Rayleigh waves extending to 140-sec-period range have been determined for 10 paths in the Indonesia-Philippine region using moving window analysis. The group velocities for five of these paths have been determined from the vertical as well as the longitudinal components and the values obtained from the two components tally with each other. It has also been possible to obtain Love-wave group velocities for three of these paths. On the basis of group-velocity values and regions covered, the observed Rayleigh-wave group-velocity data could be divided into three groups. The first group includes data for paths mostly confined to deep ocean and the observed data could be explained by standard oceanic models such as 8099. The second group includes data for paths lying partially within seismically active regions and models ARC-1 and ALRDG-9 fit with these data. The third group shows still lower group velocities for paths entirely confined to seismically active regions. The shear velocities inferred from Love-wave dispersion data are higher than those inferred from Rayleigh-wave data. In general, the group velocities varied greatly within small distances even in the longer period range, indicating strong lateral heterogeneities in the mantle.


Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Val W. Chandler ◽  
Kelley Carlson Malek

Analytical correlation of gravity and magnetic data through moving‐window application of Poisson's theorem is useful in studying the complex Precambrian geology of central Minnesota. Linear regression between the two data sets at each window position yields correlation, intercept, and slope parameters that quantitatively describe the relationship between the gravity and magnetic data and, in the case of the slope parameter, are often accurate estimates of magnetizatons‐to‐density ratios (MDR) of anomalous sources. In this study, gridded gravity and magnetic data from a 217.6 × 217.6 km area in central Minnesota were analyzed using a 8.5 × 8.5 km window. The study area includes part of the Early Proterozoic Penokean orogen and an Archean greenstone‐granite terrane of the Superior Province. The parameters derived by the moving‐window analysis show striking relationships to many geologic features, and many of the MDR estimates agree with rock property data. Inversely related gravity and magnetic anomalies are a characteristic trait of the Superior Province, but moving‐window analysis reveals that direct relationships occur locally. In the Penokean fold‐and‐thrust belt, gravity and magnetic highs over the Cuyuna range produce a prominent belt of large MDR estimates, which reflect highly deformed troughs of iron‐formation and other supracrustal rocks. This belt can be traced northeastward to sources that are buried by 3–5 km of Early Proterozoic strata in the Animikie basin. This configuration, in conjunction with recent geologic studies, indicates that the Animikie strata, which may represent foreland basin deposits associated with the Penokean orogen, unconformably overlie parts of the fold‐and‐thrust belt, and that earlier stratigraphic correlations between Cuyuna and Animikie strata are wrong. The results of this study indicate that moving‐window Poisson analysis is useful in the study of Precambrian terranes.


2020 ◽  
Author(s):  
Xiu-Zheng Zhang ◽  
Qiang Wang ◽  
Wei Dan

<p>As the largest and highest plateau on Earth, the Tibetan Plateau is distinguished from most other ranges and liner continental orogenic belts (e.g., the Alps) by its broad and flat topography. According to influential numerical and theoretical models, the (former) existence of ductile and molten mid-to-lower crust was an essential contributor to the topographic smoothing process. However, the question of whether the Tibetan Plateau has undergone widespread crustal melting remains highly controversial and hard to prove due to the scarcity of direct evidence from the deep crust. Here we first report on a series of hydrous crustal xenoliths entrained in 28 Ma host lavas from central and northern Tibet. Our new results document the former existence of hydrous crust at 28 Ma as a potentially highly fertile magma source. Quantitative modeling reveals a thermal gradient reaching about 680 ℃ to 790 ℃ at a depth of 14 to 40 kilometers, which is significantly lower than that of recent (since 2.3 Ma) evidence for hot Tibetan crust. Petrological data suggest that the initial crustal melting beneath Tibet began at 28 Ma at depths of 23–40 km (and even deeper) with 0.5–9.6 vol. % melts, which would lead to a significant reduction of seismic speeds similar to the low-velocity zones observed in the present Tibetan mid-to-lower crust. As the geothermal gradient continued to rise from 28 to 2.3 Ma, wholesale crustal melting (> 20–30 vol. %) of the mid-to-lower crust beneath Tibet was inevitable and created the modern flat Tibetan Plateau.</p>


Sign in / Sign up

Export Citation Format

Share Document