Microcrack‐induced versus intrinsic elastic anisotropy in mature HC‐source shales

Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1703-1706 ◽  
Author(s):  
Lev Vernik

Recent experimental studies of ultrasonic velocity anisotropy in kerogen‐rich shales indicate that these rocks are characterized by a very strong anisotropic response related to a very fine, bedding‐parallel lamination of organic matter and preferred orientation of clay particles in the rock matrix (Vernik and Nur, 1992). This intrinsic anisotropy is further enhanced in thermally mature shales by bedding‐parallel microcracks caused by the processes of hydrocarbon generation (Vernik, paper in preparation). However, the potential of recognizing mature source‐rocks in situ using downhole sonic, crosshole seismic, or VSP data clearly depends on our ability to discriminate between these two major causes of elastic anisotropy, remove the effect of the intrinsic anisotropy, and estimate crack density and crack porosity from velocity measurements.

Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 555-563 ◽  
Author(s):  
Lev Vernik

Laboratory measurements of ultrasonic velocity and anisotropy in kerogen‐rich black shales of varying maturity suggest that extensive, bedding‐parallel microcracks exist in situ in most mature source rocks undergoing the major stage of hydrocarbon generation and migration. Given the normal faulting regime with the vertical stress being the maximum principal stress typical of most sedimentary basins, this microcrack alignment cannot be accounted for using simplified fracture mechanics concepts. This subhorizontal microcrack alignment is consistent with (1) a model of local principal stress rotation and deviatoric stress reduction within an overpressured formation undergoing hydrocarbon generation, and with (2) a strong mechanical strength anisotropy of kerogen‐rich shales caused by bedding‐parallel alignment of kerogen microlayers. Microcracks originate within kerogen or at kerogen‐illite interfaces when pore pressure exceeds the bedding‐normal total stress by only a few MPa due to the extremely low‐fracture toughness of organic matter. P‐wave and, especially, S‐wave anisotropy of the most mature black shales, measured as a function of confining pressure, indicate the effective closure pressure of these microcracks in the range from 10 to 25 MPa. Estimates of pore pressure cycles in the matrix of the active hydrocarbon‐generating/expelling part of the source rock formation show that microcracks can be maintained open over the sequence of these cycles and hence be detectable via high‐resolution in‐situ sonic/seismic studies.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D263-D281 ◽  
Author(s):  
Adam M. Allan ◽  
Anthony C. Clark ◽  
Tiziana Vanorio ◽  
Waruntorn Kanitpanyacharoen ◽  
Hans-Rudolf Wenk

The evolution of the elastic properties of organic-rich shale as a function of thermal maturity remains poorly constrained. This understanding is pivotal to the characterization of source rocks and unconventional reservoirs. To better constrain the evolution of the elastic properties and microstructure of organic-rich shale, we have studied the acoustic velocities and elastic anisotropy of samples from two microstructurally different organic-rich shales before and after pyrolysis-induced thermal maturation. To more physically imitate in situ thermal maturation, we performed the pyrolysis experiments on intact core plugs under applied reservoir-magnitude confining pressures. Iterative characterization of the elastic properties of a clay-rich, laminar Barnett Shale sample documents the development of subparallel to bedding cracks by an increase in velocity sensitivity to pressure perpendicular to the bedding. These cracks, however, are not visible through time-lapse scanning electron microscope imaging, indicating either submicrometer crack apertures or predominant development within the core of the sample. At elevated confining pressures, in the absence of pore pressure, these induced cracks close, at which point, the sample is acoustically indistinguishable from the prepyrolysis sample. Conversely, a micritic Green River sample does not exhibit the formation of aligned compliant features. Rather, the sample exhibits a largely directionally independent decrease in velocity as load-bearing, pore-filling kerogen is removed from the sample. Due to the weak alignment of minerals, there is comparatively little intrinsic anisotropy; further, due to the relatively directionally independent evolution of velocity, the evolution of the anisotropy as a function of thermal maturity is not indicative of aligned compliant features. Our results have indicated that horizons of greater thermal maturity may be acoustically detectable in situ through increases in the elastic anisotropy of laminar shales or decreases in the acoustic velocities of nonlaminar shales, micritic rocks, or siltstones.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D41-D53 ◽  
Author(s):  
Adam M. Allan ◽  
Tiziana Vanorio ◽  
Jeremy E. P. Dahl

The sources of elastic anisotropy in organic-rich shale and their relative contribution therein remain poorly understood in the rock-physics literature. Given the importance of organic-rich shale as source rocks and unconventional reservoirs, it is imperative that a thorough understanding of shale rock physics is developed. We made a first attempt at establishing cause-and-effect relationships between geochemical parameters and microstructure/rock physics as organic-rich shales thermally mature. To minimize auxiliary effects, e.g., mineralogical variations among samples, we studied the induced evolution of three pairs of vertical and horizontal shale plugs through dry pyrolysis experiments in lieu of traditional samples from a range of in situ thermal maturities. The sensitivity of P-wave velocity to pressure showed a significant increase post-pyrolysis indicating the development of considerable soft porosity, e.g., microcracks. Time-lapse, high-resolution backscattered electron-scanning electron microscope images complemented this analysis through the identification of extensive microcracking within and proximally to kerogen bodies. As a result of the extensive microcracking, the P-wave velocity anisotropy, as defined by the Thomsen parameter epsilon, increased by up to 0.60 at low confining pressures. Additionally, the degree of microcracking was shown to increase as a function of the hydrocarbon generative potential of each shale. At 50 MPa confining pressure, P-wave anisotropy values increased by 0.29–0.35 over those measured at the baseline — i.e., the immature window. The increase in anisotropy at high confining pressure may indicate a source of anisotropy in addition to microcracking — potentially clay mineralogical transformation or the development of intrinsic anisotropy in the organic matter through aromatization. Furthermore, the evolution of acoustic properties and microstructure upon further pyrolysis to the dry-gas window was shown to be negligible.


1972 ◽  
Vol 68 (2_Supplb) ◽  
pp. S9-S25 ◽  
Author(s):  
John Urquhart ◽  
Nancy Keller

ABSTRACT Two techniques for organ perfusion with blood are described which provide a basis for exploring metabolic or endocrine dynamics. The technique of in situ perfusion with autogenous arterial blood is suitable for glands or small organs which receive a small fraction of the animal's cardiac output; thus, test stimulatory or inhibitory substances can be added to the perfusing blood and undergo sufficient dilution in systemic blood after passage through the perfused organ so that recirculation does not compromise experimental control over test substance concentration in the perfusate. Experimental studies with the in situ perfused adrenal are described. The second technique, termed the pilot organ method, is suitable for organs which receive a large fraction of the cardiac output, such as the liver. Vascular connections are made between the circulation of an intact, anaesthetized large (> 30 kg) dog and the liver of a small (< 3 kg) dog. The small dog's liver (pilot liver) is excised and floated in a bath of canine ascites, and its venous effluent is continuously returned to the large dog. Test substances are infused into either the hepatic artery or portal vein of the pilot liver, but the small size of the pilot liver and its blood flow in relation to the large dog minimize recirculation effects. A number of functional parameters of the pilot liver are described.


2006 ◽  
Vol 51 (23) ◽  
pp. 2885-2891 ◽  
Author(s):  
Xinhua Geng ◽  
Ansong Geng ◽  
Yongqiang Xiong ◽  
Jinzhong Liu ◽  
Haizu Zhang ◽  
...  

2011 ◽  
Vol 528 (6) ◽  
pp. 3003-3006 ◽  
Author(s):  
Mohsen Barmouz ◽  
Javad Seyfi ◽  
Mohammad Kazem Besharati Givi ◽  
Iman Hejazi ◽  
Seyed Mohammad Davachi

Sign in / Sign up

Export Citation Format

Share Document