Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. D41-D53 ◽  
Author(s):  
Adam M. Allan ◽  
Tiziana Vanorio ◽  
Jeremy E. P. Dahl

The sources of elastic anisotropy in organic-rich shale and their relative contribution therein remain poorly understood in the rock-physics literature. Given the importance of organic-rich shale as source rocks and unconventional reservoirs, it is imperative that a thorough understanding of shale rock physics is developed. We made a first attempt at establishing cause-and-effect relationships between geochemical parameters and microstructure/rock physics as organic-rich shales thermally mature. To minimize auxiliary effects, e.g., mineralogical variations among samples, we studied the induced evolution of three pairs of vertical and horizontal shale plugs through dry pyrolysis experiments in lieu of traditional samples from a range of in situ thermal maturities. The sensitivity of P-wave velocity to pressure showed a significant increase post-pyrolysis indicating the development of considerable soft porosity, e.g., microcracks. Time-lapse, high-resolution backscattered electron-scanning electron microscope images complemented this analysis through the identification of extensive microcracking within and proximally to kerogen bodies. As a result of the extensive microcracking, the P-wave velocity anisotropy, as defined by the Thomsen parameter epsilon, increased by up to 0.60 at low confining pressures. Additionally, the degree of microcracking was shown to increase as a function of the hydrocarbon generative potential of each shale. At 50 MPa confining pressure, P-wave anisotropy values increased by 0.29–0.35 over those measured at the baseline — i.e., the immature window. The increase in anisotropy at high confining pressure may indicate a source of anisotropy in addition to microcracking — potentially clay mineralogical transformation or the development of intrinsic anisotropy in the organic matter through aromatization. Furthermore, the evolution of acoustic properties and microstructure upon further pyrolysis to the dry-gas window was shown to be negligible.

2020 ◽  
Vol 12 (14) ◽  
pp. 5655 ◽  
Author(s):  
Zhi-Hua Xu ◽  
Guang-Liang Feng ◽  
Qian-Cheng Sun ◽  
Guo-Dong Zhang ◽  
Yu-Ming He

The drying-wetting cycles caused by operation of the Three Gorges Reservoir have considerable effect on the deterioration of reservoir bank rock mass, and the degradation of reservoir rock mass by the drying-wetting cycle is becoming obvious and serious along with the periodic operation. At present, the strength of the rock prediction research mainly focuses on the uniaxial strength, and few studies consider the drying-wetting effect and confining pressure. Therefore, in this paper, typical sandstone from a reservoir bank in the Three Gorges Reservoir area is taken as the research object, while the drying-wetting cycle test, wave velocity test and strength test are carried out for the research on the strength prediction of sandstone under the action of the drying-wetting cycle. The results show that the ultrasonic wave velocity Vp of the sandstone has an exponential function relation with the drying-wetting cycle number n, and the initial stage of drying-wetting cycles has the most significant influence on the wave velocity. Under different confining pressures, the compressive strength of sandstone decreases linearly with the increase of the drying-wetting cycle numbers, and the plastic deformation increases gradually. The damage variable of the sandstone has a power function relation with the increase of drying-wetting cycle numbers. A traditional strength prediction model based on P-wave velocity was established combined with the damage theory and Lemaitre strain equivalence hypothesis; in view of the defects of the traditional strength prediction model, a modified model considering both the drying-wetting cycle number and confining pressures was proposed, where the calculated results of the modified model are closer to the test strength value, and the prediction error is obviously decreased. This indicated that the modified model considering the drying-wetting cycle number and confining pressure is reasonable and feasible.


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Helmut Dürrast ◽  
P. N. J. Rasolofosaon ◽  
Siegfried Siegesmund

Fractures are an important fabric element in many tight gas reservoirs because they provide the necessary channels for fluid flow in rocks which usually have low matrix permeabilities. Several sandstone samples of such a reservoir type were chosen for a combined study of rock fabric elements and petrophysical properties. Geological investigations of the distribution and orientation of the fractures and sedimentary layering were performed. In addition, laboratory measurements were carried out to determine the directional dependence of the permeability and P‐wave velocities. Higher permeability values are generally in the plane of the nearly horizontal sedimentary layering with regard to the core axis. With the occurrence of subvertical fractures, however, the highest permeabilities were determined to be parallel to the core axis. Compressional wave velocities were measured on spherical samples in more than 100 directions to get the VP symmetry without prior assumptions. Below 50 MPa confining pressure, all samples show a monoclinic symmetry of the P wave velocity distribution, caused by sedimentary layering, fractures, and crossbedding. At higher confining pressure, sedimentary layering is approximately the only effective fabric element, resulting in a more transverse isotropic VP symmetry. Using the geological‐petrophysical model introduced here, the complex symmetry of the VP distributions can only be explained by the rock fabric elements. Furthermore, water saturation increases the velocities and decreases the anisotropy but does not change VP symmetry. This indicates that at this state, all fabric elements, including the fractures, have an influence on P‐wave velocity distribution.


2020 ◽  
Author(s):  
Federica Paglialunga ◽  
François X. Passelègue ◽  
Mateo Acosta ◽  
Marie Violay

<p>Recent seismological observations highlighted that earthquakes are associated to drops in elastic properties around the fault zone (Brenguier et al., 2008). This drop is often attributed to co-seismic damage produced at the rupture tip, and can mostly be observed at shallow depths. However, it is known that in the upper crust, faults are surrounded by a zone of damage (Caine, Evans, & Forster, 1996). Because of this, the origin of the velocity change associated to earthquakes, as well as its recovery in the months following the rupture remains highly debated.</p><p>We conducted stick-slip experiments to explore the evolution of elastic waves velocities during the entire seismic cycle. The tests were run on saw-cut La Peyratte granite samples presenting different initial degrees of damage, obtained through thermal treatment. Three types of samples were studied: not thermally treated, thermally treated at 650 °C and thermally treated at 950 °C. Seismic events were induced in a triaxial configuration apparatus at different confining pressures ranging from 15 MPa to 120 MPa. Active acoustic measurements were carried through the whole duration of the tests and P-wave velocities were measured.</p><p> </p><p>The evolution of P-wave velocity follows the evolution of the shear stress acting on the fault, showing velocity drops during dynamic slip events. The evolution of the P-wave velocity drops with increasing confining pressure shows two different trends; the largest drops can be observed for low confining pressure (15 MPa) and decrease for intermediate confining pressures (up to 45 MPa), while for confining pressures of 60 MPa to 120 MPa, drops in velocity slightly increase with confining pressure.</p><p>Our results highlight that at low confining pressures (15-45 MPa), the change in elastic velocity is controlled by the sample bulk properites (damage of the medium surrounding the fault), while for higher confining pressures (60-120 MPa), it might be the result of co-seismic damage.</p><p>These preliminary results bring a different interpretation to the seismic velocity drops observed in nature, attributed to co-seismic damage. In our experiments co-seismic damage is not observed, except for high confining pressures (laboratory equivalent for large depths), while the change in P-wave velocity seems to be highly related to combined stress conditions and initial damage around the fault for low confining pressures (laboratory equivalent for shallow depths).</p>


2017 ◽  
Vol 5 (4) ◽  
pp. SS23-SS42 ◽  
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Peder Eliasson ◽  
Etor Querendez ◽  
Hong Yan ◽  
...  

Reliable quantification of carbon dioxide ([Formula: see text]) properties and saturation is crucial in the monitoring of [Formula: see text] underground storage projects. We have focused on quantitative seismic characterization of [Formula: see text] at the Sleipner storage pilot site. We evaluate a methodology combining high-resolution seismic waveform tomography, with uncertainty quantification and rock physics inversion. We use full-waveform inversion (FWI) to provide high-resolution estimates of P-wave velocity [Formula: see text] and perform an evaluation of the reliability of the derived model based on posterior covariance matrix analysis. To get realistic estimates of [Formula: see text] saturation, we implement advanced rock physics models taking into account effective fluid phase theory and patchy saturation. We determine through sensitivity tests that the estimation of [Formula: see text] saturation is possible even when using only the P-wave velocity as input. After a characterization of rock frame properties based on log data prior to the [Formula: see text] injection at Sleipner, we apply our two-step methodology. The FWI result provides clear indications of the injected [Formula: see text] plume being observed as low-velocity zones corresponding to thin [Formula: see text] filled layers. Several tests, varying the rock physics model and [Formula: see text] properties, are then performed to estimate [Formula: see text] saturation. The results suggest saturations reaching 30%–35% in the thin sand layers and up to 75% when patchy mixing is considered. We have carried out a joint estimation of saturation with distribution type and, even if the inversion is not well-constrained due to limited input data, we conclude that the [Formula: see text] has an intermediate pattern between uniform and patchy mixing, which leads to saturation levels of approximately [Formula: see text]. It is worth noting that the 2D section used in this work is located 533 m east of the injection point. We also conclude that the joint estimation of [Formula: see text] properties with saturation is not crucial and consequently that knowing the pressure and temperature state of the reservoir does not prevent reliable estimation of [Formula: see text] saturation.


2020 ◽  
pp. 1-62 ◽  
Author(s):  
Jamal Ahmadov ◽  
Mehdi Mokhtari

Tuscaloosa Marine Shale (TMS) formation is a clay- and organic-rich emerging shale play with a considerable amount of hydrocarbon resources. Despite the substantial potential, there have been only a few wells drilled and produced in the formation over the recent years. The analyzed TMS samples contain an average of 50 wt% total clay, 27 wt% quartz and 14 wt% calcite and the mineralogy varies considerably over the small intervals. The high amount of clay leads to pronounced anisotropy and the frequent changes in mineralogy result in the heterogeneity of the formation. We studied the compressional (VP) and shear-wave (VS) velocities to evaluate the degree of anisotropy and heterogeneity, which impact hydraulic fracture growth, borehole instabilities, and subsurface imaging. The ultrasonic measurements of P- and S-wave velocities from five TMS wells are the best fit to the linear relationship with R2 = 0.84 in the least-squares criteria. We observed that TMS S-wave velocities are relatively lower when compared to the established velocity relationships. Most of the velocity data in bedding-normal direction lie outside constant VP/VS lines of 1.6–1.8, a region typical of most organic-rich shale plays. For all of the studied TMS samples, the S-wave velocity anisotropy exhibits higher values than P-wave velocity anisotropy. In the samples in which the composition is dominated by either calcite or quartz minerals, mineralogy controls the velocities and VP/VS ratios to a great extent. Additionally, the organic content and maturity account for the velocity behavior in the samples in which the mineralogical composition fails to do so. The results provide further insights into TMS Formation evaluation and contribute to a better understanding of the heterogeneity and anisotropy of the play.


2020 ◽  
Vol 6 (2) ◽  
pp. 113-120
Author(s):  
Harnanti Yogaputri Hutami ◽  
Fitriyani Fitriyani ◽  
Tiara Larasati Priniarti ◽  
Handoyo Handoyo

The rock physics model is one effective yet challenging way to investigate the coal-seam gas potential in Indonesia. However, because of the complex conditions of the Coal-Seam Gas Reservoirs, it is difficult to establish models. Despite the scarce modeling, this study aims to estimate the relation of gas-saturated within pores of coal seam to the elastic properties of rock, which is P-wave velocity. First, the coal seam minerals are applied to quantify matrix moduli using the Voigt-Reuss-Hill Average method. Pride’s simple equation is used to estimate the elastic properties of the coal seam at dry condition (zero gas saturation). Finally, Biot-Gassmann’s theory is applied to determine the elastic properties of coal seam with fully gas saturated. As the result, the proposed model showed that there is a significant negative correlation between gas content with both density and P-wave velocity of the coal seam. Finally, this P-wave velocity model of gas-saturated coal seams should be properly useful as the quick look for identifying coal seam gas potentials. 


Sign in / Sign up

Export Citation Format

Share Document