Nonlinear inversion of resistivity sounding data

Geophysics ◽  
1993 ◽  
Vol 58 (4) ◽  
pp. 496-507 ◽  
Author(s):  
Mrinal K. Sen ◽  
Bimalendu B. Bhattacharya ◽  
Paul L. Stoffa

The resistivity interpretation problem involves the estimation of resistivity as a function of depth from the apparent resistivity values measured in the field as a function of electrode separation. This is commonly done either by curve matching using master curves or by more formal linearized inversion methods. The problems with linearized inversion schemes are fairly well known; they require that the starting model be close to the true solution. In this paper, we report the results from the application of a nonlinear global optimization method known as simulated annealing (SA) in the direct interpretation of resistivity sounding data. This method does not require a good starting model but is computationally more expensive. We used the heat bath algorithm of simulated annealing in which the mean square error (difference between observed and synthetic data) is used as the energy function that we attempt to minimize. Samples are drawn from the Gibbs probability distribution while the control parameter the temperature is slowly lowered, finally resulting in models that are very close to the globally optimal solutions. This method is also described in the framework of Bayesian statistics in which the Gibbs distribution is identified as the a posteriori probability density function in model space. Computation of the true posterior distribution requires computation of the energy function at each point in model space. However, a fairly good estimate of the most significant portion(s) of the function can be obtained from simulated annealing run in a reasonable computation time. This can be achieved by making several repeat runs of SA, each time starting with a new random number seed so that the most significant portion of the model space is adequately sampled. Once the posterior density function is known, many measures of dispersion can be made. In particular, we compute a mean model and the a posteriori covariance matrix. We have applied this method successfully to synthetic and field data. The resulting correlation covariance matrices indicate how the model parameters affect one another and are very useful in relating geology to the resulting resisitivity values.

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. F189-F195 ◽  
Author(s):  
Changchun Yin ◽  
Greg Hodges

The traditional algorithms for airborne electromagnetic (EM) inversion, e.g., the Marquardt-Levenberg method, generally run only a downhill search. Consequently, the model solutions are strongly dependent on the starting model and are easily trapped in local minima. Simulated annealing (SA) starts from the Boltzmann distribution and runs both downhill and uphill searches, rendering the searching process to easily jump out of local minima and converge to a global minimum. In the SA process, the calculation of Jacobian derivatives can be avoided because no preferred searching direction is required as in the case of the traditional algorithms. We apply SA technology for airborne EM inversion by comparing the inversion with a thermodynamic process, and we discuss specifically the SA procedure with respect to model configuration, random walk for model updates, objective function, and annealing schedule. We demonstrate the SA flexibility for starting models by allowing the model parameters to vary in a large range (far away from the true model). Further, we choose a temperature-dependent random walk for model updates and an exponential cooling schedule for the SA searching process. The initial temperature for the SA cooling scheme is chosen differently for different model parameters according to their resolvabilities. We examine the effectiveness of the algorithm for airborne EM by inverting both theoretical and survey data and by comparing the results with those from the traditional algorithms.


Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Lopamudra Roy ◽  
Mrinal K. Sen ◽  
Donald D. Blankenship ◽  
Paul L. Stoffa ◽  
Thomas G. Richter

Interpretation of gravity data warrants uncertainty estimation because of its inherent nonuniqueness. Although the uncertainties in model parameters cannot be completely reduced, they can aid in the meaningful interpretation of results. Here we have employed a simulated annealing (SA)–based technique in the inversion of gravity data to derive multilayered earth models consisting of two and three dimensional bodies. In our approach, we assume that the density contrast is known, and we solve for the coordinates or shapes of the causative bodies, resulting in a nonlinear inverse problem. We attempt to sample the model space extensively so as to estimate several equally likely models. We then use all the models sampled by SA to construct an approximate, marginal posterior probability density function (PPD) in model space and several orders of moments. The correlation matrix clearly shows the interdependence of different model parameters and the corresponding trade-offs. Such correlation plots are used to study the effect of a priori information in reducing the uncertainty in the solutions. We also investigate the use of derivative information to obtain better depth resolution and to reduce underlying uncertainties. We applied the technique on two synthetic data sets and an airborne-gravity data set collected over Lake Vostok, East Antarctica, for which a priori constraints were derived from available seismic and radar profiles. The inversion results produced depths of the lake in the survey area along with the thickness of sediments. The resulting uncertainties are interpreted in terms of the experimental geometry and data error.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R793-R804 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen ◽  
Faqi Liu ◽  
Scott Morton

A good starting model is imperative in full-waveform inversion (FWI) because it solves a least-squares inversion problem using a local gradient-based optimization method. A suboptimal starting model can result in cycle skipping leading to poor convergence and incorrect estimation of subsurface properties. This problem is especially crucial for salt models because the strong velocity contrasts create substantial time shifts in the modeled seismogram. Incorrect estimation of salt bodies leads to velocity inaccuracies in the sediments because the least-squares gradient aims to reduce traveltime differences without considering the sharp velocity jump between sediments and salt. We have developed a technique to estimate velocity models containing salt bodies using a combination of global and local optimization techniques. To stabilize the global optimization algorithm and keep it computationally tractable, we reduce the number of model parameters by using sparse parameterization formulations. The sparse formulation represents sediments using a set of interfaces and velocities across them, whereas a set of ellipses represents the salt body. We use very fast simulated annealing (VFSA) to minimize the misfit between the observed and synthetic data and estimate an optimal model in the sparsely parameterized space. The VFSA inverted model is then used as a starting model in FWI in which the sediments and salt body are updated in the least-squares sense. We partition model updates into sediment and salt updates in which the sediments are updated like conventional FWI, whereas the shape of the salt is updated by taking the zero crossing of an evolving level set surface. Our algorithm is tested on two 2D synthetic salt models, namely, the Sigsbee 2A model and a modified SEG Advanced Modeling Program (SEAM) Phase I model while fixing the top of the salt. We determine the efficiency of the VFSA inversion and imaging improvements from the level set FWI approach and evaluate a few sources of uncertainty in the estimation of salt shapes.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. WB3-WB15 ◽  
Author(s):  
Shashi Prakash Sharma ◽  
Arkoprovo Biswas

A very fast simulated-annealing (VFSA) global optimization procedure is developed for the interpretation of self-potential (SP) anomaly measured over a 2D inclined sheet-type structure. Model parameters such as electric current dipole density ([Formula: see text]), horizontal and vertical locations of the center of the causative body ([Formula: see text] and [Formula: see text]), half-width ([Formula: see text]), and polarization/inclination angle ([Formula: see text]) of the sheet are optimized. VFSA optimization yields a large number of well-fitting solutions in a vast model space. Even though the assumed model space (minimum and maximum limits for each model parameter) is appropriate, it has been observed that models obtained by the VFSA process in the predefined model space could also be geologically erroneous. This offers new insight into the interpretation of self-potential data. Our optimization results indicate that there exist at least two sets of solutions that can fit the observed data equally well. The first set of solutions represents a local optimum and is geologically inappropriate. The second set of solutions represents the actual subsurface structure. The mean model estimated from the latter models represents the global solution. The efficacy of the developed approach has been demonstrated using various synthetic examples. Field data from the Surda area of Rakha Mines, India and the Bavarian woods, Germany are also interpreted. The computation time for finding this versatile solution is very short (52 s on a simple PC) and the proposed approach is found to be more advantageous than other approaches.


1990 ◽  
Vol 2 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Reza Shadmehr ◽  
David Z. D'Argenio

The feasibility of developing a neural network to perform nonlinear Bayesian estimation from sparse data is explored using an example from clinical pharmacology. The problem involves estimating parameters of a dynamic model describing the pharmacokinetics of the bronchodilator theophylline from limited plasma concentration measurements of the drug obtained in a patient. The estimation performance of a backpropagation trained network is compared to that of the maximum likelihood estimator as well as the maximum a posteriori probability estimator. In the example considered, the estimator prediction errors (model parameters and outputs) obtained from the trained neural network were similar to those obtained using the nonlinear Bayesian estimator.


Geophysics ◽  
1991 ◽  
Vol 56 (11) ◽  
pp. 1794-1810 ◽  
Author(s):  
Paul L. Stoffa ◽  
Mrinal K. Sen

Seismic waveform inversion is one of many geophysical problems which can be identified as a nonlinear multiparameter optimization problem. Methods based on local linearization fail if the starting model is too far from the true model. We have investigated the applicability of “Genetic Algorithms” (GA) to the inversion of plane‐wave seismograms. Like simulated annealing, genetic algorithms use a random walk in model space and a transition probability rule to help guide their search. However, unlike a single simulated annealing run, the genetic algorithms search from a randomly chosen population of models (strings) and work with a binary coding of the model parameter set. Unlike a pure random search, such as in a “Monte Carlo” method, the search used in genetic algorithms is not directionless. Genetic algorithms essentially consist of three operations, selection, crossover, and mutation, which involve random number generation, string copies, and some partial string exchanges. The choice of the initial population, the probabilities of crossover and mutation are crucial for the practical implementation of the algorithm. We investigated the effects of these parameters in the inversion of plane‐wave seismograms in which a normalized crosscorrelation function was used as the objective or fitness function (E). We also introduce the concept of “update” probability to control the influence of past generations. The combination of a low value of mutation probability (∼0.01), a moderate value of the crossover probability (∼0.6) and a high value of update probability (∼0.9) are found to be optimal for the convergence of the algorithm. Further, we show that concepts from simulated annealing can be used effectively for the stretching of the fitness function which helps in the convergence of the algorithm. Thus, we propose to use exp (E/T) rather than E as the fitness function, where T (analogous to temperature in simulated annealing) is a properly chosen parameter which can change slowly with each generation. Also, by repeating the GA optimization procedure several times with different randomly chosen initial model populations, we derive “a very good subset” of models from the entire model space and calculate the a posteriori probability density σ(m) ∝ exp (E(m)/T). The σ(m) ’s are then used to calculate a “mean” model, which is found to be close to the true model.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


Sign in / Sign up

Export Citation Format

Share Document