Full-waveform inversion of salt models using shape optimization and simulated annealing

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R793-R804 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen ◽  
Faqi Liu ◽  
Scott Morton

A good starting model is imperative in full-waveform inversion (FWI) because it solves a least-squares inversion problem using a local gradient-based optimization method. A suboptimal starting model can result in cycle skipping leading to poor convergence and incorrect estimation of subsurface properties. This problem is especially crucial for salt models because the strong velocity contrasts create substantial time shifts in the modeled seismogram. Incorrect estimation of salt bodies leads to velocity inaccuracies in the sediments because the least-squares gradient aims to reduce traveltime differences without considering the sharp velocity jump between sediments and salt. We have developed a technique to estimate velocity models containing salt bodies using a combination of global and local optimization techniques. To stabilize the global optimization algorithm and keep it computationally tractable, we reduce the number of model parameters by using sparse parameterization formulations. The sparse formulation represents sediments using a set of interfaces and velocities across them, whereas a set of ellipses represents the salt body. We use very fast simulated annealing (VFSA) to minimize the misfit between the observed and synthetic data and estimate an optimal model in the sparsely parameterized space. The VFSA inverted model is then used as a starting model in FWI in which the sediments and salt body are updated in the least-squares sense. We partition model updates into sediment and salt updates in which the sediments are updated like conventional FWI, whereas the shape of the salt is updated by taking the zero crossing of an evolving level set surface. Our algorithm is tested on two 2D synthetic salt models, namely, the Sigsbee 2A model and a modified SEG Advanced Modeling Program (SEAM) Phase I model while fixing the top of the salt. We determine the efficiency of the VFSA inversion and imaging improvements from the level set FWI approach and evaluate a few sources of uncertainty in the estimation of salt shapes.

2019 ◽  
Vol 219 (3) ◽  
pp. 1970-1988 ◽  
Author(s):  
Weiguang He ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
René-Édouard Plessix

SUMMARY Land seismic multiparameter full waveform inversion in anisotropic media is challenging because of high medium contrasts and surface waves. With a data-residual least-squares objective function, the surface wave energy usually masks the body waves and the gradient of the objective function exhibits high values in the very shallow depths preventing from recovering the deeper part of the earth model parameters. The optimal transport objective function, coupled with a Gaussian time-windowing strategy, allows to overcome this issue by more focusing on phase shifts and by balancing the contributions of the different events in the adjoint-source and the gradients. We first illustrate the advantages of the optimal transport function with respect to the least-squares one, with two realistic examples. We then discuss a vertical transverse isotropic (VTI) example starting from a quasi 1-D isotropic initial model. Despite some cycle-skipping issues in the initial model, the inversion based on the windowed optimal transport approach converges. Both the near-surface complexities and the variations at depth are recovered.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. A33-A37 ◽  
Author(s):  
Amsalu Y. Anagaw ◽  
Mauricio D. Sacchi

Full-waveform inversion (FWI) can provide accurate estimates of subsurface model parameters. In spite of its success, the application of FWI in areas with high-velocity contrast remains a challenging problem. Quadratic regularization methods are often adopted to stabilize inverse problems. Unfortunately, edges and sharp discontinuities are not adequately preserved by quadratic regularization techniques. Throughout the iterative FWI method, an edge-preserving filter, however, can gently incorporate sharpness into velocity models. For every point in the velocity model, edge-preserving smoothing assigns the average value of the most uniform window neighboring the point. Edge-preserving smoothing generates piecewise-homogeneous images with enhanced contrast at boundaries. We adopt a simultaneous-source frequency-domain FWI, based on quasi-Newton optimization, in conjunction with an edge-preserving smoothing filter to retrieve high-contrast velocity models. The edge-preserving smoothing filter gradually removes the artifacts created by simultaneous-source encoding. We also have developed a simple model update to prevent disrupting the convergence of the optimization algorithm. Finally, we perform tests to examine our algorithm.


2020 ◽  
Vol 222 (1) ◽  
pp. 610-627 ◽  
Author(s):  
Peng Guo ◽  
Gerhard Visser ◽  
Erdinc Saygin

SUMMARY Seismic full waveform inversion (FWI) is a state-of-the-art technique for estimating subsurface physical models from recorded seismic waveform, but its application requires care because of high non-linearity and non-uniqueness. The final outcome of global convergence from conventional FWI using local gradient information relies on an informative starting model. Bayesian inference using Markov chain Monte Carlo (MCMC) sampling is able to remove such dependence, by a direct extensive search of the model space. We use a Bayesian trans-dimensional MCMC seismic FWI method with a parsimonious dipping layer parametrization, to invert for subsurface velocity models from pre-stack seismic shot gathers that contain mainly reflections. For the synthetic study, we use a simple four-layer model and a modified Marmousi model. A recently collected multichannel off-shore seismic reflection data set, from the Lord Howe Rise (LHR) in the east of Australia, is used for the field data test. The trans-dimensional FWI method is able to provide model ensembles for describing posterior distribution, when the dipping-layer model assumption satisfies the observed data. The model assumption requires narrow models, thus only near-offset data to be used. We use model stitching with lateral and depth constraints to create larger 2-D models from many adjacent overlapping submodel inversions. The inverted 2-D velocity model from the Bayesian inference can then be used as a starting model for the gradient-based FWI, from which we are able to obtain high-resolution subsurface velocity models, as demonstrated using the synthetic data. However, lacking far-offset data limits the constraints for the low-wavenumber part of the velocity model, making the inversion highly non-unique. We found it challenging to apply the dipping-layer based Bayesian FWI to the field data. The approximations in the source wavelet and forward modelling physics increase the multimodality of the posterior distribution; the sampled velocity models clearly show the trade-off between interface depth and velocity. Numerical examples using the synthetic and field data indicate that trans-dimensional FWI has the potential for inverting earth models from reflection waveform. However, a sparse model parametrization and far offset constraints are required, especially for field application.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R493-R507
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Yuzhu Liu ◽  
Yanwen Wei ◽  
Haohuan Fu

Full-waveform inversion (FWI) is a highly nonlinear and nonconvex problem. To mitigate the dependence of FWI on the quality of starting model and on the low frequencies in the data, we apply the gradient sampling algorithm (GSA) introduced for nonsmooth, nonconvex optimization problems to FWI. The search space is hugely expanded to have more freedom to accommodate large velocity errors in the starting model. The original implementation of GSA requires explicit calculation of the gradient at each sampled vector, which is prohibitively expensive. Based on the observation that a slight perturbation in the velocity model causes a small spatial shift of the wavefield, we have approximated the sampled gradients by crosscorrelating the space-shifted source- and receiver-side wavefields. Theoretical derivation suggests that the two wavefields should be shifted in the same direction to obtain reasonable low-wavenumber updates. The final descent search direction is obtained by summing all the shifted gradients. For practical implementation, we only take one random space shift at each time step during the gradient calculation. This simplification provides an efficient realization in which the computational costs and memory requirements are the same as conventional FWI. Multiple numerical examples demonstrate that the proposed method alleviates the cycle-skipping problem of conventional FWI when starting from very crude initial velocity models without low-frequency data.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. U61-U72 ◽  
Author(s):  
Hejun Zhu ◽  
Sergey Fomel

We have proposed a misfit function based on adaptive matching filtering (AMF) to tackle challenges associated with cycle skipping and local minima in full-waveform inversion (FWI). This AMF is designed to measure time-varying phase differences between observations and predictions. Compared with classical least-squares waveform differences, our misfit function behaves as a smooth, quadratic function with a broad basin of attraction. These characters are important because local gradient-based optimization approaches used in most FWI schemes cannot guarantee convergence toward true models if misfit functions include local minima or if the starting model is far away from the global minimum. The 1D and 2D synthetic experiments illustrate the advantages of the proposed misfit function compared with the classical least-squares waveform misfit. Furthermore, we have derived adjoint sources associated with the proposed misfit function and applied them in several 2D time-domain acoustic FWI experiments. Numerical results found that the proposed misfit function can provide good starting models for FWI, particularly when low-frequency signals are absent in recorded data.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. R541-R551 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Daniel Peter ◽  
Tariq Alkhalifah

When present in the subsurface, salt bodies impact the complexity of wave-equation-based seismic imaging techniques, such as least-squares reverse time migration and full-waveform inversion (FWI). Typically, the Born approximation used in every iteration of least-squares-based inversions is incapable of handling the sharp, high-contrast boundaries of salt bodies. We have developed a variance-based method for reconstruction of velocity models to resolve the imaging and inversion issues caused by salt bodies. Our main idea lies in retrieving useful information from independent updates corresponding to FWI at different frequencies. After several FWI iterations, we compare the model updates by considering the variance distribution between them to identify locations most prone to cycle skipping. We interpolate velocities from the surrounding environment into these high-variance areas. This approach allows the model to gradually improve from identifying easily resolvable areas and extrapolating the model updates from those to the areas that are difficult to resolve at early FWI iterations. In numerical tests, our method demonstrates the ability to obtain convergent FWI results at higher frequencies.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.


Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Xinhai Hu ◽  
Wei Guoqi ◽  
Jianyong Song ◽  
Zhifang Yang ◽  
Minghui Lu ◽  
...  

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of near surface, which are as important as the model parameters for the inversion success. We propose a full waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameter. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problem to invert the model parameter without the knowledge of source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.


Sign in / Sign up

Export Citation Format

Share Document