Static delays in acoustic logging

Geophysics ◽  
1994 ◽  
Vol 59 (3) ◽  
pp. 362-370 ◽  
Author(s):  
Jacques P. Leveille ◽  
Richard B. Nerf

Borehole‐consistent analysis (analogous to surface‐consistent seismic refraction statics analysis) of compressional wave arrivals in full‐waveform acoustic logs reveal arrival‐time anomalies of tens of microseconds. These anomalies are correlated with lithology and are similar for logging sondes of different geometries. The magnitude of the anomalies makes it unlikely that they are caused by caliper errors or the presence of an altered annulus around the borehole. A possible explanation is given in terms of the Fourier phase spectrum of the first compressional arrivals. The theoretical delays depend on the formation elastic parameters, the borehole geometry and the properties of the borehole fluid; a sensitivity analysis of the relevant parameters is presented.

2021 ◽  
Vol 93 (2) ◽  
pp. 104-127
Author(s):  
Raul Mollehuara-Canales ◽  
◽  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Juha Lunkka ◽  
...  

We applied active-source seismic method for the interpretation of elastic parameters in tailings facilities which is essential for evaluating stability and seismic response. The methodology uses different analysis methods on the same dataset, i.e., conventional seismic refraction (SR) to determine compressional-wave velocity (Vp) and multichannel analysis of surface wave (MASW) to estimate shear-wave velocity (Vs). Seismic velocities in conjunction with tailings physics approach revealed interpretable data in terms of elastic parameters and hydrogeological conditions. The results determined the empirical linear relationships between Vp and Vs that are particular to an unconsolidated media such as tailings and showed that variability of hydrogeological conditions influences the elastic seismic response (Vp and Vs) and the elastic parameters. The analysis of the elastic parameters identified the state condition of the tailings at the time of the survey. The Bulk modulus K that relates the change in hydrostatic stress to the volumetric strain was predominant between 1.0−2.0 GPa. The Young’s modulus E in the tailings media was in the low range of 0.15−0.23 GPa. Poisson’s ratio values in all sections were in the upper limit in the range of 0.37−0.49, meaning that the tailings media is highly susceptible to transverse deformation under axial compression.


1972 ◽  
Vol 8 (6) ◽  
pp. 669-672
Author(s):  
M. F. Drukovanyi ◽  
E. I. Efremov ◽  
V. N. Kalinichenko ◽  
A. S. Babko-Malyi ◽  
P. A. Ryabov

1985 ◽  
Vol 29 (03) ◽  
pp. 170-188
Author(s):  
G. Ferro ◽  
A. E. Mansour

The success of implementing reliability analysis in structural design depends to a large extent on the ability to combine the loads acting on the structure, and on extrapolating their magnitudes to obtain the extreme value of the total combined load. In this paper, a new theory is proposed to combine the slamming and wave-induced responses of a ship moving in irregular seas. The slamming and wave-induced responses are both considered as stochastic processes, and the properties of the combined response are determined on that basis. The slamming loads alone are considered as a train of impulses of random intensity and random arrival time as has been shown by Mansour and Lozow [1],3 but the dependence between the intensity and arrival time is considered in the stochastic modeling. The extreme value of the combined response is then investigated for use in design applications. An example of application to a cargo ship is given and a sensitivity analysis is conducted to determine how sensitive the results are to some of the important input parameters.


For the experiments described in this paper a new method of seismic refraction shooting was developed. With this method hydrophones suspended at a depth of about 100 ft. below the surface of the sea acted as receivers for the compressional waves developed by depth charges exploding at a depth of approximately 900 ft. The hydrophones were connected with sono-radio buoys which radio-transmitted the electrical signals to a recording system in the ship from which the charges were dropped. Four buoys were in use simultaneously, distributed at differing ranges from the ship. The experiments were carried out at three positions in an area of the eastern Atlantic around the point 53° 50' N, 18° 40' W, where the water depth is approximately 1300 fm. (2400 m). The results showed that the uncrystalline sedimentary layer in this area varied in thickness from 6200 ft. to 9700 ft. (1900 to 3000 m), and that the velocity of compressional waves in it increased from the value for sea water, 4900 ft./s (1.5 km/s), at the surface with an approximately constant gradient of 2.5/s to a limiting value of 8200 ft./s (2.5 km/s). Below the sedimentary layer there was a crystalline rock with compressional wave velocity of approximately 16500 ft./s (5.0 km/s) and of thickness varying between 8800 ft. (2700 m) and 11100 ft. (3400 m). The base of this layer was in both determinations at approximately 25500 ft. (7800 m) below sea-level. The lowest layer concerning which information was obtained gave a value for the compressional wave velocity of about 20500 ft./s (6.3 km/s), but was of undetermined thickness. The characteristics of the sedimentary layer were such as might be expected for a continuous succession of deep-sea sediments, the thickness on this basis being such as to indicate the long existence of the ocean in this area. On the other hand, it is possible that it represents a downwarped continental shelf. The layer below the sedimentary layer has a compressional wave velocity which is low for an igneous rock at this depth, and it is probable that it represents a crystalline sedimentary rock. From the evidence it is not possible to determine whether this rock is of continental or deep-sea origin. The lowest layer of these experiments is unlikely to have a constitution similar to that of the European granitic layer, since the compressional wave velocity in it would, on this hypothesis, be exceptionally high. The value is, however, close to that calculated by Jeffreys for the intermediate layer.


1964 ◽  
Vol 1 (1) ◽  
pp. 10-22 ◽  
Author(s):  
D. L. Barrett ◽  
M. Berry ◽  
J. E. Blanchard ◽  
M. J. Keen ◽  
R. E. McAllister

The results of seismic refraction profiles on the Atlantic coast of Nova Scotia and on the continental shelf off Nova Scotia are presented. Compressional and shear waves have been observed in the crust and mantle and suggest that the thickness of the crust is about 34 km. The compressional wave velocities recorded in the main crust and upper mantle are 6.10 and 8.11 km s−1 respectively. No compressional waves with values of velocity between these values can be identified, and this suggests that any "intermediate" layer is thin or absent. The corresponding shear wave velocities are 3.68 and 4.53 km s−1. Values of Poisson's ratio in the crust and mantle are 0.22 and 0.28. Alternative models of the crust which, on the evidence of travel times, might fit the observed results are discussed.


Sign in / Sign up

Export Citation Format

Share Document