Velocity dispersion: A tool for characterizing reservoir rocks

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 477-486 ◽  
Author(s):  
Raymon L. Brown ◽  
Dirk Seifer

Apparent discrepancies between velocity measurements made with different frequencies in a formation at the Gypsy test site are explained in terms of elastic scattering and intrinsic attenuation. The elastic scattering component of the dispersion (38%) in a marine interval above the Gypsy sandstone is estimated via simple models constructed from well log information. Any dispersion above the predicted value for elastic scattering in this interval is assigned to intrinsic attenuation (62%). Using the vertical measurements in the well, the marine interval directly above the Gypsy sandstone has an estimated intrinsic [Formula: see text] and an effective Q because of the scattering of [Formula: see text]. The total Q of the combined mechanisms is 32. The dispersion of the vertical measurements through the heterogeneous sands and shales of the Gypsy formation can be explained using an intrinsic [Formula: see text] and neglecting the effects of scattering. The horizontal observations require a more detailed modeling effort to unravel the relative roles of path and volume effects, elastic scattering, attenuation, and intrinsic anisotropy. Thin layers barely resolvable on the sonic logs play a significant role in modifying the cross‐well response. Potentially, the dispersion can be a key to mapping reservoir properties using crosswell and surface seismic data.

2019 ◽  
Vol 7 (2) ◽  
pp. SC11-SC19
Author(s):  
Saleh Al-Dossary ◽  
Jinsong Wang ◽  
Yuchun E. Wang

Seismic interpreters and processors encounter ever-increasing volumes of seismic attributes in geophysical exploration each year. Multiattribute integration and classification improve the ability to identify geologic facies and reservoir properties, such as thickness, fluid type, fracture intensity, and orientation. Simple color mixing technology allows us to display three attributes simultaneously. To overcome this limit, we extend from three nodes to up to eight nodes octree color quantization originated from image processing of compressing colors to handle eight groups of attributes to form a single attribute. We can then apply the group reduction criterion for geophysical data classification to reveal common geologic targets while preserving the small variations or thin layers often present in hydrocarbon reservoirs. By combining multiple attributes, we hope to see all individual geologic features in the same image but also channels that might not be visible in any single attribute and to focus on major geobodies through group reduction classification on combined data. We first applied the method to a 2D section of poststack seismic data and well logs to test its validity, and then we further used it on scaled curvatures and other 3D seismic attributes to showcase the aforementioned benefits. Storage efficiency is a noted additional advantage of octree. However, the importance of selecting relevant attributes for octree application cannot be underestimated and requires the involvement of experienced seismic interpreters.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. O9-O17 ◽  
Author(s):  
Upendra K. Tiwari ◽  
George A. McMechan

In inversion of viscoelastic full-wavefield seismic data, the choice of model parameterization influences the uncertainties and biases in estimating seismic and petrophysical parameters. Using an incomplete model parameterization results in solutions in which the effects of missing parameters are attributed erroneously to the parameters that are included. Incompleteness in this context means assuming the earth is elastic rather than viscoelastic. The inclusion of compressional and shear-wave quality factors [Formula: see text] and [Formula: see text] in inversion gives better estimates of reservoir properties than the less complete (elastic) model parameterization. [Formula: see text] and [Formula: see text] are sensitive primarily to fluid types and saturations. The parameter correlations are sensitive also to the model parameterization. As noise increases in the viscoelastic input data, the resolution of the estimated parameters decreases, but the parameter correlations are relatively unaffected by modest noise levels.


2021 ◽  
Author(s):  
S Al Naqbi ◽  
J Ahmed ◽  
J Vargas Rios ◽  
Y Utami ◽  
A Elila ◽  
...  

Abstract The Thamama group of reservoirs consist of porous carbonates laminated with tight carbonates, with pronounced lateral heterogeneities in porosity, permeability, and reservoir thickness. The main objective of our study was mapping variations and reservoir quality prediction away from well control. As the reservoirs were thin and beyond seismic resolution, it was vital that the facies and porosity be mapped in high resolution, with a high predictability, for successful placement of horizontal wells for future development of the field. We established a unified workflow of geostatistical inversion and rock physics to characterize the reservoirs. Geostatistical inversion was run in static models that were converted from depth to time domain. A robust two-way velocity model was built to map the depth grid and its zones on the time seismic data. This ensured correct placement of the predicted high-resolution elastic attributes in the depth static model. Rock physics modeling and Bayesian classification were used to convert the elastic properties into porosity and lithology (static rock-type (SRT)), which were validated in blind wells and used to rank the multiple realizations. In the geostatistical pre-stack inversion, the elastic property prediction was constrained by the seismic data and controlled by variograms, probability distributions and a guide model. The deterministic inversion was used as a guide or prior model and served as a laterally varying mean. Initially, unconstrained inversion was tested by keeping all wells as blind and the predictions were optimized by updating the input parameters. The stochastic inversion results were also frequency filtered in several frequency bands, to understand the impact of seismic data and variograms on the prediction. Finally, 30 wells were used as input, to generate 80 realizations of P-impedance, S-impedance, Vp/Vs, and density. After converting back to depth, 30 additional blind wells were used to validate the predicted porosity, with a high correlation of more than 0.8. The realizations were ranked based on the porosity predictability in blind wells combined with the pore volume histograms. Realizations with high predictability and close to the P10, P50 and P90 cases (of pore volume) were selected for further use. Based on the rock physics analysis, the predicted lithology classes were associated with the geological rock-types (SRT) for incorporation in the static model. The study presents an innovative approach to successfully integrate geostatistical inversion and rock physics with static modeling. This workflow will generate seismically constrained high-resolution reservoir properties for thin reservoirs, such as porosity and lithology, which are seamlessly mapped in the depth domain for optimized development of the field. It will also account for the uncertainties in the reservoir model through the generation of multiple equiprobable realizations or scenarios.


2021 ◽  
pp. 1-69
Author(s):  
Marwa Hussein ◽  
Robert R. Stewart ◽  
Deborah Sacrey ◽  
Jonny Wu ◽  
Rajas Athale

Net reservoir discrimination and rock type identification play vital roles in determining reservoir quality, distribution, and identification of stratigraphic baffles for optimizing drilling plans and economic petroleum recovery. Although it is challenging to discriminate small changes in reservoir properties or identify thin stratigraphic barriers below seismic resolution from conventional seismic amplitude data, we have found that seismic attributes aid in defining the reservoir architecture, properties, and stratigraphic baffles. However, analyzing numerous individual attributes is a time-consuming process and may have limitations for revealing small petrophysical changes within a reservoir. Using the Maui 3D seismic data acquired in offshore Taranaki Basin, New Zealand, we generate typical instantaneous and spectral decomposition seismic attributes that are sensitive to lithologic variations and changes in reservoir properties. Using the most common petrophysical and rock typing classification methods, the rock quality and heterogeneity of the C1 Sand reservoir are studied for four wells located within the 3D seismic volume. We find that integrating the geologic content of a combination of eight spectral instantaneous attribute volumes using an unsupervised machine-learning algorithm (self-organizing maps [SOMs]) results in a classification volume that can highlight reservoir distribution and identify stratigraphic baffles by correlating the SOM clusters with discrete net reservoir and flow-unit logs. We find that SOM classification of natural clusters of multiattribute samples in the attribute space is sensitive to subtle changes within the reservoir’s petrophysical properties. We find that SOM clusters appear to be more sensitive to porosity variations compared with lithologic changes within the reservoir. Thus, this method helps us to understand reservoir quality and heterogeneity in addition to illuminating thin reservoirs and stratigraphic baffles.


2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


2020 ◽  
Vol 8 (1) ◽  
pp. T89-T102
Author(s):  
David Mora ◽  
John Castagna ◽  
Ramses Meza ◽  
Shumin Chen ◽  
Renqi Jiang

The Daqing field, located in the Songliao Basin in northeastern China, is the largest oil field in China. Most production in the Daqing field comes from seismically thin sand bodies with thicknesses between 1 and 15 m. Thus, it is not usually possible to resolve Daqing reservoirs using only conventional seismic data. We have evaluated the effectiveness of seismic multiattribute analysis of bandwidth extended data in resolving and making inferences about these thin layers. Multiattribute analysis uses statistical methods or neural networks to find relationships between well data and seismic attributes to predict some physical property of the earth. This multiattribute analysis was applied separately to conventional seismic data and seismic data that were spectrally broadened using sparse-layer inversion because this inversion method usually increases the vertical resolution of the seismic. Porosity volumes were generated using target porosity logs and conventional seismic attributes, and isofrequency volumes were obtained by spectral decomposition. The resulting resolution, statistical significance, and accuracy in the determination of layer properties were higher for the predictions made using the spectrally broadened volume.


Sign in / Sign up

Export Citation Format

Share Document