Applications of quantitative prestack seismic analysis to unconventional resource play characterization in the Permian/Delaware Basin

2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.

2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


2021 ◽  
Author(s):  
Nasrine Medjdouba ◽  
Zahia Benaissa ◽  
Sabiha Annou

<p>The main hydrocarbon-bearing reservoirover the study area is the lower Triassic Argilo-Gréseux reservoir. The Triassic sand is deposited as fluvial channels and overbank sands with a thickness ranging from 10 to 20 m, lying unconformably on the Paleozoic formations. Lateral and vertical distribution of the sand bodies is challenging which makes their mapping very difficult andnearly impossible with conventional seismic analysis. </p><p>In order to better define the optimum drilling targets, the seismic attribute analysis and reservoir characterization process were performed targeting suchthin reservoir level, analysis of available two seismic vintages of PSTM cubes as well as post and pre stack inversion results were carried out.The combination of various attributes analysis (RMS amplitude, Spectral decomposition, variance, etc.) along with seismic inversion results has helped to clearly identify the channelized feature and its delineation on various horizon slices and geobodies, the results were reviewed and calibrated with reservoir properties at well location and showed remarkable correlation.</p><p>Ten development wells have been successfully drilledbased on the seismic analysis study, confirming the efficiency of seismic attribute analysis to predicted channel body geometry.</p><p>Keywords: Channel, Attributes, Amplitude, Inversion, Fluvial reservoir.</p>


2013 ◽  
Vol 1 (2) ◽  
pp. SB37-SB49 ◽  
Author(s):  
John Henry Alzate ◽  
Deepak Devegowda

Technologies such as horizontal drilling and multistage hydraulic fracturing are central to ensuring the viability of shale oil and gas resource development by maximizing contact with the most productive reservoir volumes. However, characterization efforts based on the use of well logs and cores, although very informative, may be associated with substantial uncertainty in interwell volumes. Consequently, this work is centered around the development of a predictive tool based on surface seismic data analysis to rapidly demarcate the most prolific reservoir volumes, to identify zones more amenable to hydraulic fracturing, and to provide a methodology to locate productive infill wells for further development. Specifically, we demonstrate that surface seismic attributes such as [Formula: see text]/[Formula: see text] crossplots can successfully be employed to quantitatively grade reservoir rocks in unconventional plays. We also investigate the role of seismically inverted Poisson’s ratio as a fracability discriminator and Young’s modulus as an indicator of total organic carbon richness and porosity. The proposed predictive tool for sweet spot identification relies on classifying reservoir volumes on the basis of their amenability to fracturing and reservoir quality. The classification scheme is applied to a field case study from the Lower Barnett Shale and we validate these results using production logs recorded in four horizontal wells and microseismic data acquired while fracturing these wells. The integration of seismic data, production logs, and microseismic data underscores the value of shale reservoir characterization with a diverse suite of measurements to determine optimal well locations and to locate hydraulic fracture treatments. A key advantage of the methodology developed here is the ease of regional-scale characterization that can easily be generalized to other shale plays.


2021 ◽  
Author(s):  
I. Sumantri

BH field is one of the Globigerina limestone gas reservoir that exhibits strong seismic direct hydrocarbon indicator (DHI). This field is a 4-way dip faulted closure with Globigerina limestone as the main reservoir objective. The field was discovered back in 2011 by BH-1 exploration well and successfully penetrated about 350ft gross gas pay. BH-1 well was plugged and abandoned as Pliocene Globigerina limestone Mundu-Selorejo sequence gas discoveries. The laboratory analysis of sampled gas consists of 97.8% of CH4 and indicating a biogenic type of gas. This is the only exploration well drilled in this field and located on the crest of the structure. Seismic analysis both qualitative and quantitative, are common tools in delineating and characterizing reservoir. These methods usually make use of seismic data and well log collaboratively in the quest to reveal reservoir features internally. The lack of appraisal well in the area of study made the reservoir characterization process must be carried out thoroughly, incorporating several seismic datasets, both PSTM and PSDM, seismic gathers and stacks. Bounded by appraisal well limitation, this research looks into Gassmann's fluid substitution modeling, seismic forward modeling to confirm the DHI flat spot presence in the seismic, as well as seismic AVO analysis. Meanwhile, for quantitative analysis, model-based seismic post-stack inversion and simultaneous seismic pre-stack inversion were conducted in order to delineate the distribution of Globigerina limestone gas reservoir in BH Field. Through comprehensive analyses of qualitative and quantitative methods, this research may answer the challenge on how to intensively utilize seismic data to compensate the lack of appraisal well data in order to keep delivering a proper subsurface reservoir delineation.


Author(s):  
Amir Abbas Babasafari ◽  
Shiba Rezaei ◽  
Ahmed Mohamed Ahmed Salim ◽  
Sayed Hesammoddin Kazemeini ◽  
Deva Prasad Ghosh

Abstract For estimation of petrophysical properties in industry, we are looking for a methodology which results in more accurate outcome and also can be validated by means of some quality control steps. To achieve that, an application of petrophysical seismic inversion for reservoir properties estimation is proposed. The main objective of this approach is to reduce uncertainty in reservoir characterization by incorporating well log and seismic data in an optimal manner. We use nonlinear optimization algorithms in the inversion workflow to estimate reservoir properties away from the wells. The method is applied at well location by fitting nonlinear experimental relations on the petroelastic cross-plot, e.g., porosity versus acoustic impedance for each lithofacies class separately. Once a significant match between the measured and the predicted reservoir property is attained in the inversion workflow, the petrophysical seismic inversion based on lithofacies classification is applied to the inverted elastic property, i.e., acoustic impedance or Vp/Vs ratio derived from seismic elastic inversion to predict the reservoir properties between the wells. Comparison with the neural network method demonstrated this application of petrophysical seismic inversion to be competitive and reliable.


2001 ◽  
Vol 41 (2) ◽  
pp. 131
Author(s):  
A.G. Sena ◽  
T.M. Smith

The successful exploration for new reservoirs in mature areas, as well as the optimal development of existing fields, requires the integration of unconventional geological and geophysical techniques. In particular, the calibration of 3D seismic data to well log information is crucial to obtain a quantitative understanding of reservoir properties. The advent of new technology for prestack seismic data analysis and 3D visualisation has resulted in improved fluid and lithology predictions prior to expensive drilling. Increased reservoir resolution has been achieved by combining seismic inversion with AVO analysis to minimise exploration risk.In this paper we present an integrated and systematic approach to prospect evaluation in an oil/gas field. We will show how petrophysical analysis of well log data can be used as a feasibility tool to determine the fluid and lithology discrimination capabilities of AVO and inversion techniques. Then, a description of effective AVO and prestack inversion tools for reservoir property quantification will be discussed. Finally, the incorporation of the geological interpretation and the use of 3D visualisation will be presented as a key integration tool for the discovery of new plays.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O57-O67 ◽  
Author(s):  
Daria Tetyukhina ◽  
Lucas J. van Vliet ◽  
Stefan M. Luthi ◽  
Kees Wapenaar

Fluvio-deltaic sedimentary systems are of great interest for explorationists because they can form prolific hydrocarbon plays. However, they are also among the most complex and heterogeneous ones encountered in the subsurface, and potential reservoir units are often close to or below seismic resolution. For seismic inversion, it is therefore important to integrate the seismic data with higher resolution constraints obtained from well logs, whereby not only the acoustic properties are used but also the detailed layering characteristics. We have applied two inversion approaches for poststack, time-migrated seismic data to a clinoform sequence in the North Sea. Both methods are recursive trace-based techniques that use well data as a priori constraints but differ in the way they incorporate structural information. One method uses a discrete layer model from the well that is propagated laterally along the clinoform layers, which are modeled as sigmoids. The second method uses a constant sampling rate from the well data and uses horizontal and vertical regularization parameters for lateral propagation. The first method has a low level of parameterization embedded in a geologic framework and is computationally fast. The second method has a much higher degree of parameterization but is flexible enough to detect deviations in the geologic settings of the reservoir; however, there is no explicit geologic significance and the method is computationally much less efficient. Forward seismic modeling of the two inversion results indicates a good match of both methods with the actual seismic data.


2013 ◽  
Vol 1 (2) ◽  
pp. SB97-SB108 ◽  
Author(s):  
Benjamin L. Dowdell ◽  
J. Tim Kwiatkowski ◽  
Kurt J. Marfurt

With the advent of horizontal drilling and hydraulic fracturing in the Midcontinent, USA, fields once thought to be exhausted are now experiencing renewed exploitation. However, traditional Midcontinent seismic analysis techniques no longer provide satisfactory reservoir characterization for these unconventional plays; new seismic analysis methods are needed to properly characterize these radically innovative play concepts. Time processing and filtering is applied to a raw 3D seismic data set from Osage County, Oklahoma, paying careful attention to velocity analysis, residual statics, and coherent noise filtering. The use of a robust prestack structure-oriented filter and spectral whitening greatly enhances the results. After prestack time migrating the data using a Kirchhoff algorithm, new velocities are picked. A final normal moveout correction is applied using the new velocities, followed by a final prestack structure-oriented filter and spectral whitening. Simultaneous prestack inversion uses the reprocessed and time-migrated seismic data as input, along with a well from within the bounds of the survey. With offsets out to 3048 m and a target depth of approximately 880 m, we can invert for density in addition to P- and S-impedance. Prestack inversion attributes are sensitive to lithology and porosity while surface seismic attributes such as coherence and curvature are sensitive to lateral changes in waveform and structure. We use these attributes in conjunction with interpreted horizontal image logs to identify zones of high porosity and high fracture density.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Sign in / Sign up

Export Citation Format

Share Document