Application of optical‐fiber temperature logging—An example in a sedimentary environment

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrea Förster ◽  
J. Schrötter ◽  
D. F. Merriam ◽  
David D. Blackwell

Continuous‐temperature depth logs, especially when recorded in boreholes under thermal equilibrium conditions, provide detailed information of the subsurface thermal structure, which is necessary for the determination of reliable heat‐flow and rock thermal properties. In conjunction with independent thermal‐conductivity determinations, thermal logging data also allow the separation of heat conduction effects from thermal convection effects by fluid flow driven by various pressure differences such as pore fluid pressure. The Earth's thermal field is related intimately to geothermal resources and hydrocarbon resources. Therefore, the characterization of temperature in the subsurface and its relationship to lithology is of critical importance.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 850
Author(s):  
Jadwiga A. Jarzyna ◽  
Stanisław Baudzis ◽  
Mirosław Janowski ◽  
Edyta Puskarczyk

Examples from the Polish clastic and carbonate reservoirs from the Central Polish Anticlinorium, Carpathians and Carpathian Foredeep are presented to illustrate possibilities of using well logging to geothermal resources recognition and characterization. Firstly, there was presented a short description of selected well logs and methodology of determination of petrophysical parameters useful in geothermal investigations: porosity, permeability, fracturing, mineral composition, elasticity of orogeny and mineralization of formation water from well logs. Special attention was allotted to spectral gamma-ray and temperature logs to show their usefulness to radiogenic heat calculation and heat flux modelling. Electric imaging and advanced acoustic logs provided with continuous information on natural and induced fracturing of formation and improved lithology recognition. Wireline and production logging were discussed to present the wealth of methods that could be used. A separate matter was thermal conductivity provided from the laboratory experiments or calculated from the results of the comprehensive interpretation of well logs, i.e., volume or mass of minerals composing the rocks. It was proven that, in geothermal investigations and hydrocarbon prospection, the same petrophysical parameters are considered, and well-logging acquisition equipment and advanced methods of processing and interpretation, developed and improved for almost one hundred years, can be successfully used in the detection and characterization of the potential geothermal reservoirs. It was shown that the newest (current investment)—as well as the old type (archive)—logs provide useful information.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-99
Author(s):  
Abu Zakir Morshed ◽  
Sheikh Shakib ◽  
Tanzim Jahin

Corrosion of reinforcement is an important durability concern for the structures exposed to coastal regions. Since corrosion of reinforcement involves long periods of time, impressed current technique is usually used to accelerate the corrosion of reinforcement in laboratories. Characterization of impressed current technique was the main focus of this research,which involved determination of optimum chloride content and minimum immersion time of specimens for which the application of Faraday’s law could be efficient. To obtain optimum chloride content, the electrolytes in the corrosion cell were prepared similar to that of concrete pore solutions. Concrete prisms of 200 mm by 200 mm by 300 mm were used to determine the minimum immersion time for saturation. It was found that the optimum chloride content was 35 gm/L and the minimum immersion time for saturation was 140 hours. Accounting the results, a modified expression based on Faraday’s law was proposed to calculate weight loss due to corrosion. Journal of Engineering Science 11(1), 2020, 93-99


2008 ◽  
Vol 2 (2) ◽  
pp. 155-177 ◽  
Author(s):  
Eugene Brently Young
Keyword(s):  

Eternal return is the paradox that accounts for the interplay between difference and repetition, a dynamic at the heart of Deleuze's philosophy, and Blanchot's approach to this paradox, even and especially through what it elides, further illuminates it. Deleuze draws on Blanchot's characterisations of difference, forgetting, and the unlivable to depict the ‘sense’ produced via eternal return, which, for Blanchot, is where repetition implicates or ‘carries’ pure difference. However, for Deleuze, difference and the unlivable are also developed by the living repetition or ‘contraction’ of habit, which results in his distinctive characterization of ‘force’, ‘levity’, and sense in eternal return.


2018 ◽  
Author(s):  
D. Basak ◽  
L. H. Ponce

Abstract Two case-studies on uncommon metals whiskers, performed at the Reliability Analysis Laboratory (RAL) of Northrop Grumman Innovation Systems, are presented. The components analyzed are an Oven Controlled Crystal Oscillator (OCXO) and an Electromechanical Relay. Investigative techniques were used to determine the chemical and physical makeup of the metal whiskers and develop an understanding of the underlying effects and mechanisms that caused the conditions conducive to whisker growth.


Sign in / Sign up

Export Citation Format

Share Document