Variation of P-wave reflectivity with offset and azimuth in anisotropic media

Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 935-947 ◽  
Author(s):  
Andreas Rüger

P-wave amplitudes may be sensitive even to relatively weak anisotropy of rock mass. Recent results on symmetry‐plane P-wave reflection coefficients in azimuthally anisotropic media are extended to observations at arbitrary azimuth, large incidence angles, and lower symmetry systems. The approximate P-wave reflection coefficient in transversely isotropic media with a horizontal axis of symmetry (HTI) (typical for a system of parallel vertical cracks embedded in an isotropic matrix) shows that the amplitude versus offset (AVO) gradient varies as a function of the squared cosine of the azimuthal angle. This change can be inverted for the symmetry‐plane directions and a combination of the shear‐wave splitting parameter γ and the anisotropy coefficient [Formula: see text]. The reflection coefficient study is also extended to media of orthorhombic symmetry that are believed to be more realistic models of fractured reservoirs. The study shows the orthorhombic and HTI reflection coefficients are very similar and the azimuthal variation in the orthorhombic P-wave reflection response is a function of the shear‐wave splitting parameter γ and two anisotropy parameters describing P-wave anisotropy for near‐vertical propagation in the symmetry planes. The simple relationships between the reflection amplitudes and anisotropic coefficients given here can be regarded as helpful rules of thumb in quickly evaluating the importance of anisotropy in a particular play, integrating results of NMO and shear‐wave‐splitting analyses, planning data acquisition, and guiding more advanced numerical amplitude‐inversion procedures.

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB193-WB202 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Such reservoir rocks as tar sands are characterized by significant attenuation and, in some cases, attenuation anisotropy. Most existing attenuation studies are focused on plane-wave attenuation coefficients, which determine the amplitude decay along the raypath of seismic waves. Here we study the influence of attenuation on PP- and PS-wave reflection coefficients for anisotropic media with the main emphasis on transversely isotropic models with a vertical symmetry axis (VTI). Concise analytic solutions obtained by linearizing the exact plane-wave reflection coefficients are verified by numerical modeling. To make a substantial contribution to reflection coefficients, attenuation must be strong, with the quality factor [Formula: see text] not exceeding 10. For such highly attenuative media, it is also necessary to take attenuation anisotropy into account if the magnitude of the Thomsen-styleattenuation-anisotropy parameters is relatively large. In general, the linearized reflection coefficients in attenuative media include velocity-anisotropy parameters but have almost “isotropic” dependence on attenuation. Our formalism also helps evaluate the influence of the inhomogeneity angle (the angle between the real and imaginary parts of the slowness vector) on the reflection coefficients. A nonzero inhomogeneity angle of the incident wave introduces additional terms into the PP- and PS-wave reflection coefficients, which makes conventional amplitude-variation-with-offset (AVO) analysis inadequate for strongly attenuative media. For instance, an incident P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-wave at normal incidence, even if both half-spaces have a horizontal symmetry plane. The developed linearized solutions can be used in AVO inversion for highly attenuative (e.g., gas-sand and heavy-oil) reservoirs.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 614-629 ◽  
Author(s):  
Ilya Tsvankin

Transverse isotropy with a horizontal axis of symmetry (HTI) is the simplest azimuthally anisotropic model used to describe fractured reservoirs that contain parallel vertical cracks. Here, I present an exact equation for normal‐moveout (NMO) velocities from horizontal reflectors valid for pure modes in HTI media with any strength of anisotropy. The azimuthally dependent P‐wave NMO velocity, which can be obtained from 3-D surveys, is controlled by the principal direction of the anisotropy (crack orientation), the P‐wave vertical velocity, and an effective anisotropic parameter equivalent to Thomsen's coefficient δ. An important parameter of fracture systems that can be constrained by seismic data is the crack density, which is usually estimated through the shear‐wave splitting coefficient γ. The formalism developed here makes it possible to obtain the shear‐wave splitting parameter using the NMO velocities of P and shear waves from horizontal reflectors. Furthermore, γ can be estimated just from the P‐wave NMO velocity in the special case of the vanishing parameter ε, corresponding to thin cracks and negligible equant porosity. Also, P‐wave moveout alone is sufficient to constrain γ if either dipping events are available or the velocity in the symmetry direction is known. Determination of the splitting parameter from P‐wave data requires, however, an estimate of the ratio of the P‐to‐S vertical velocities (either of the split shear waves can be used). Velocities and polarizations in the vertical symmetry plane of HTI media, that contains the symmetry axis, are described by the known equations for vertical transverse isotropy (VTI). Time‐related 2-D P‐wave processing (NMO, DMO, time migration) in this plane is governed by the same two parameters (the NMO velocity from a horizontal reflector and coefficient ε) as in media with a vertical symmetry axis. The analogy between vertical and horizontal transverse isotropy makes it possible to introduce Thomsen parameters of the “equivalent” VTI model, which not only control the azimuthally dependent NMO velocity, but also can be used to reconstruct phase velocity and carry out seismic processing in off‐symmetry planes.


2012 ◽  
Vol 40 ◽  
pp. 138-145 ◽  
Author(s):  
Lucia Zaccarelli ◽  
Francesca Bianco ◽  
Riccardo Zaccarelli

2018 ◽  
Vol 12 (5) ◽  
pp. 1715-1734 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s−1 for P-wave and 200 m s−1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s−1 for the alpine ice core and 59 m s−1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s−1 for P-wave and 280 m s−1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s−1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s−1 for P wave and more than 200 m s−1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s−1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1261-1271 ◽  
Author(s):  
Andrey A. Ortega ◽  
George A. McMechan

Dynamic ray shooting with interpolation is an economical way of computing approximate Green’s functions in 3-D heterogeneous anisotropic media. The amplitudes, traveltimes, and polarizations of the reflected rays arriving at the surface are interpolated to synthesize three‐component seismograms at the desired recording points. The algorithm is applied to investigate kinematic quasi-P-wave propagation and converted quasi-P-S-wave splitting variations produced in reflections from the bottom of a layer containing two sets of intersecting dry vertical fractures as a function of the angle between the fracture sets and of the intensity of fracturing. An analytical expression is derived for the stiffness constant C16 that extends Hudson’s second‐order scattering theory to include tetragonal-2 symmetry systems. At any offset, the amount of splitting in nonorthogonal (orthorhombic symmetry) intersecting fracture sets is larger than in orthogonal (tetragonal-1 symmetry) systems, and it increases nonlinearly as a function of the intensity of fracturing as offset increases. Such effects should be visible in field data, provided that the dominant frequency is sufficiently high and the offset is sufficiently large. The amount of shear‐wave splitting at vertical incidence increases nonlinearly as a function of the intensity of fracturing and increases nonlinearly from zero in the transition from tetragonal-1 anisotropy through orthorhombic to horizontal transverse isotropy; the latter corresponds to the two crack systems degenerating to one. The zero shear‐wave splitting corresponds to a singularity, at which the vertical velocities of the two quasi‐shear waves converge to a single value that is both predicted theoretically and illustrated numerically. For the particular case of vertical fractures, there is no P-to-S conversion of vertically propagating (zero‐offset) waves. If the fractures are not vertical, the normal incidence P-to-S reflection coefficient is not zero and thus is a potential diagnostic of fracture orientation.


Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Andreas Rüger

The study of P‐wave reflection coefficients in anisotropic media is important for amplitude variation with offset (AVO) analysis. While numerical evaluation of the reflection coefficient is straightforward, numerical solutions do not provide analytic insight into the influence of anisotropy on the AVO signature. To overcome this difficulty, I present an improved approximation for P‐wave reflection coefficients at a horizontal boundary in transversely isotropic media with vertical axis of symmetry (VTI media). This solution has the same AVO‐gradient term describing the low‐order angular variation of the reflection coefficient as the equations published previously, but is more accurate for large incidence angles. The refined approximation is then extended to transverse isotropy with a horizontal axis of symmetry (HTI), which is caused typically by a system of vertical cracks. Comparison of the approximate reflection coefficients for P‐waves incident in the two vertical symmetry planes of HTI media indicates that the azimuthal variation of the AVO gradient is a function of the shear‐wave splitting parameter γ, and the anisotropy parameter describing P‐wave anisotropy for nearvertical propagation in the vertical plane containing the symmetry axis.


Sign in / Sign up

Export Citation Format

Share Document