Reply by the author to D. F. Winterstein

Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1793-1793
Author(s):  
R. A. Ensley
Keyword(s):  
P Wave ◽  
S Wave ◽  

Mr. Winterstein is entirely correct in pointing out that the S‐wave data presented in my paper were a brute stack. In addition, the P‐wave data presented were also a brute stack.

2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


2002 ◽  
Vol 42 (1) ◽  
pp. 627
Author(s):  
R.G. Williams ◽  
G. Roberts ◽  
K. Hawkins

Seismic energy that has been mode converted from pwave to s-wave in the sub-surface may be recorded by multi-component surveys to obtain information about the elastic properties of the earth. Since the energy converted to s-wave is missing from the p-wave an alternative to recording OBC multi-component data is to examine p-wave data for the missing energy. Since pwave velocities are generally faster than s-wave velocities, then for a given reflection point the converted s-wave signal reaches the surface at a shorter offset than the equivalent p-wave information. Thus, it is necessary to record longer offsets for p-wave data than for multicomponent data in order to measure the same information.A non-linear, wide-angle (including post critical) AVO inversion has been developed that allows relative changes in p-wave velocities, s-wave velocities and density to be extracted from long offset p-wave data. To extract amplitudes at long offsets for this inversion it is necessary to image the data correctly, including correcting for higher order moveout and possibly anisotropy if it is present.The higher order moveout may itself be inverted to yield additional information about the anisotropy of the sub-surface.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


1998 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
J. Helen Isaac ◽  
Don C. Lawton
Keyword(s):  
P Wave ◽  
S Wave ◽  

1971 ◽  
Vol 61 (6) ◽  
pp. 1655-1673 ◽  
Author(s):  
Umesh Chandra

abstract A method has been proposed for the combination of P-wave first-motion directions and S-wave polarization data for the numerical determination of earthquake focal mechanism. The method takes into account the influence of nearness of stations with inconsistent P-wave polarity observations, with respect to the assumed nodal planes. The mechanism solutions for six earthquakes selected from different geographic locations and depth ranges have been determined. Equal area projections of the nodal planes together with the P-wave first-motion and S-wave polarization data are presented for each earthquake. The quality of resolution of nodal plane determination on the basis of P-wave data, S-wave polarization, and the combination of P and S-wave data according to the present method, is discussed.


1969 ◽  
Vol 59 (2) ◽  
pp. 799-811
Author(s):  
Samuel T. Harding ◽  
S. T. Algermissen

abstract Two nodal planes for P were determined using a combination of P-wave first motion and S-wave polarization data and from S-wave data alone. The S-wave polarization error, δ∈, is slightly lower for a type Il than for a type I mechanism. The type I mechanism solution indicates a predominately dip-slip faulting on a steeply dipping plane. The preferred solution is a type II mechanism with the following P nodal planes: strike N62°E, dip 82°S, (a plane); strike N22°W, dip 52°W, (b plane). Two solutions are possible: right lateral faulting which strikes northeast; or, left lateral faulting which strikes northwest. Both possible fault planes dip steeply.


2016 ◽  
Vol 4 (3) ◽  
pp. SH21-SH37 ◽  
Author(s):  
Mathieu J. Duchesne ◽  
André J.-M. Pugin ◽  
Gabriel Fabien-Ouellet ◽  
Mathieu Sauvageau

The combined use of P- and S-wave seismic reflection data is appealing for providing insights into active petroleum systems because P-waves are sensitive to fluids and S-waves are not. The method presented herein relies on the simultaneous acquisition of P- and S-wave data using a vibratory source operated in the inline horizontal mode. The combined analysis of P- and S-wave reflections is tested on two potential hydrocarbon seeps located in a prospective area of the St. Lawrence Lowlands in Eastern Canada. For both sites, P-wave data indicate local changes in the reflection amplitude and slow velocities, whereas S-wave data present an anomalous amplitude at one site. Differences between P- and S-wave reflection morphology and amplitude and the abrupt decrease in P-velocity are indirect lines of evidence for hydrocarbon migration toward the surface through unconsolidated sediments. Surface-gas analysis made on samples taken at one potential seeping site reveals the occurrence of thermogenic gas that presumably vents from the underlying fractured Utica Shale forming the top of the bedrock. The 3C shear data suggest that fluid migration locally disturbs the elastic properties of the matrix. The comparative analysis of P- and S-wave data along with 3C recordings makes this method not only attractive for the remote detection of shallow hydrocarbons but also for the exploration of how fluid migration impacts unconsolidated geologic media.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 504-507 ◽  
Author(s):  
Franklyn K. Levin

Tessmer and Behle (1988) show that S-wave velocity can be estimated from surface seismic data if both normal P-wave data and converted‐wave data (P-SV) are available. The relation of Tessmer and Behle is [Formula: see text] (1) where [Formula: see text] is the S-wave velocity, [Formula: see text] is the P-wave velocity, and [Formula: see text] is the converted‐wave velocity. The growing body of converted‐wave data suggest a brief examination of the validity of equation (1) for velocities that vary with depth.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas Davis

The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document