Detection of near-surface hydrocarbon seeps using P- and S-wave reflections

2016 ◽  
Vol 4 (3) ◽  
pp. SH21-SH37 ◽  
Author(s):  
Mathieu J. Duchesne ◽  
André J.-M. Pugin ◽  
Gabriel Fabien-Ouellet ◽  
Mathieu Sauvageau

The combined use of P- and S-wave seismic reflection data is appealing for providing insights into active petroleum systems because P-waves are sensitive to fluids and S-waves are not. The method presented herein relies on the simultaneous acquisition of P- and S-wave data using a vibratory source operated in the inline horizontal mode. The combined analysis of P- and S-wave reflections is tested on two potential hydrocarbon seeps located in a prospective area of the St. Lawrence Lowlands in Eastern Canada. For both sites, P-wave data indicate local changes in the reflection amplitude and slow velocities, whereas S-wave data present an anomalous amplitude at one site. Differences between P- and S-wave reflection morphology and amplitude and the abrupt decrease in P-velocity are indirect lines of evidence for hydrocarbon migration toward the surface through unconsolidated sediments. Surface-gas analysis made on samples taken at one potential seeping site reveals the occurrence of thermogenic gas that presumably vents from the underlying fractured Utica Shale forming the top of the bedrock. The 3C shear data suggest that fluid migration locally disturbs the elastic properties of the matrix. The comparative analysis of P- and S-wave data along with 3C recordings makes this method not only attractive for the remote detection of shallow hydrocarbons but also for the exploration of how fluid migration impacts unconsolidated geologic media.

Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


Geophysics ◽  
1984 ◽  
Vol 49 (5) ◽  
pp. 493-508 ◽  
Author(s):  
Robert H. Tatham ◽  
Donald V. Goolsbee

Hard water‐bottom marine environments, such as offshore western Florida, have presented particular problems in the acquisition and processing of seismic reflection data. One problem has been the limited angle of incidence (less than critical) available to P‐wave penetration into the subsurface. Mode conversion from P‐wave to S‐waves (SV), however, is quite efficient over a broad range of angles of incidence. After the success of a previously reported physical model experiment, an experimental line was acquired offshore western Florida. The 19 mile line, located approximately 100 miles west of Key West, Florida, was shot and processed. Three key factors have contributed to the successful recording of mode‐converted S‐wave reflections: (1) recognition of the effect of the group length on attenuation of energy arriving at large angles of incidence; (2) tau‐p processing techniques that allow separation of energy by angle of incidence; and (3) velocity filtering over a range of hyperbolic normal‐moveout (NMO) velocities as part of the forward tau‐p transform. These three factors, two of them data processing techniques, have allowed separation of P‐ and S‐wave energy in the marine environment. Overall, S‐wave reflections have been unambiguously identified to a reflection time of 2 sec and may be interpreted to a reflection time of 2 sec. Integrating an S‐wave section with P‐wave interpretations of offshore Florida data allows an independent confirmation of structural events. This independent confirmation may be more significant than improvements in the P‐wave data quality alone. Lateraly stable [Formula: see text] values are computed in intervals 1500 to 5000 ft thick and to S‐wave reflection times as great as 3 sec. The opportunity of [Formula: see text], interpretations for lithologic identification, gas thickness estimates, and general stratigraphic trap exploration makes mode‐converted shear waves a new tool in this area.


Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 566-573 ◽  
Author(s):  
Tor Arne Johansen ◽  
Per Digranes ◽  
Mark van Schaack ◽  
Ida Lønne

A knowledge of permafrost conditions is important for planning the foundation of buildings and engineering activities at high latitudes and for geological mapping of sediment thicknesses and architecture. The freezing of sediments is known to greatly affect their seismic velocities. In polar regions the actual velocities of the upper sediments may therefore potentially reveal water saturation and extent of freezing. We apply various strategies for modeling seismic velocities and reflectivity properties of unconsolidated granular materials as a function of water saturation and freezing conditions. The modeling results are used to interpret a set of high‐resolution seismic data collected from a glaciomarine delta at Spitsbergen, the Norwegian Arctic, where the upper subsurface sediments are assumed to be in transition from unfrozen to frozen along a transect landward from the delta front. To our knowledge, this is the first attempt to study pore‐fluid freezing from such data. Our study indicates that the P‐ and S‐wave velocities may increase as much as 80–90% when fully, or almost fully, water‐saturated unconsolidated sediments freeze. Since a small amount of frozen water in the voids of a porous rock can lead to large velocity increases, the freezing of sediments reduces seismic resolution; thus, the optimum resolution is obtained at locations where the sediments appear unfrozen. The reflectivity from boundaries separating sediments of slightly different porosity may depend more strongly on the actual saturation rather than changes in granular characteristics. For fully water‐saturated sediments, the P‐wave reflectivity decreases sharply with freezing, while the reflectivity becomes less affected as the water saturation is lowered. Thus, a combination of velocity and reflectivity information may reveal saturation and freezing conditions.


2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. T221-T231 ◽  
Author(s):  
Christine E. Krohn ◽  
Thomas J. Murray

The top 6 m of the near surface has a surprisingly large effect on the behavior of P- and S-waves. For unconsolidated sediments, the P-wave velocity gradient and attenuation can be quite large. Computer modeling should include these properties to accurately reproduce seismic effects of the near surface. We have used reverse VSP data and computer simulations to demonstrate the following effects for upgoing P-waves. Near the surface, we have observed a large time delay, indicating low velocity ([Formula: see text]), and considerable pulse broadening, indicating high attenuation ([Formula: see text]). Consequently, shallowly buried geophones have greater high-frequency bandwidth compared with surface geophones. In addition, there is a large velocity gradient in the shallow near surface (factor of 10 in 5 m), resulting in the rotation of P-waves to the vertical with progressively smaller amplitudes recorded on horizontal phones. Finally, we have found little indication of a reflection or ghost from the surface, although downgoing reflections have been observed from interfaces within the near surface. In comparison, the following have been observed for upgoing S-waves: There is a small increase in the time delay or pulse broadening near the surface, indicating a smaller velocity gradient and less change in attenuation. In addition, the surface reflection coefficient is nearly one with a prominent surface ghost.


Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 460-465 ◽  
Author(s):  
Rob Long ◽  
Thomas Vogt ◽  
Mike Lowe ◽  
Peter Cawley

A technique is presented that uses a circular ultrasonic waveguide to measure the bulk shear (S‐wave) and longitudinal (P‐wave) velocities of unconsolidated media, with particular application to near‐surface soils. The technique requires measuring the attenuation characteristics of the fundamental longitudinal mode that propagates along an embedded bar, from which the acoustic properties of the surrounding medium are inferred. The principles behind the technique are discussed, and the results of an experimental laboratory validation are presented, followed by details of in‐situ soil property measurements obtained at various sites in urban areas of the United Kingdom.


Sign in / Sign up

Export Citation Format

Share Document