Direct shear-wave seismic survey in Sanhu area, Qaidam Basin, west China

2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.

2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas Davis

The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.


2021 ◽  
Author(s):  
Jiru Guo ◽  
Zhiwen Deng ◽  
Junyong Zhang ◽  
Wei Tan ◽  
Guowen Chen ◽  
...  

Abstract The biogas lithologic reservoirs in Sanhu Area of the Qaidam Basin has a broad exploration prospect, however, the demands of structural implementation and reservoir prediction can hardly be met with the existing P-wave seismic data due to the thin thickness of single sandstone layers, the rapid lateral changes and the low prediction accuracy of lithologic reservoirs. The SH-wave data has a higher resolution ability in lithology prediction. I can better reflect the lateral change features of formations. Because few SH-wave logging data are available and they are in accurate in the current study area, the SH-wave velocity is estimated through petrophysical modeling and the calibration and horizon interpretation of the SH-wave data are realized combined with the P- and SH-wave matching technology. Through the inversion of S-wave data,the lithological distribution of formations are predicted in combination with the comrehensive analysis of P-wave data, which provides a favorable basis for the survey of lithologic gas reservoir in the research area and achieves a good good result. In this way,a set of reservoir prediction methods and processes suitable for the shallow biogas lithological exploration in the Sanhu Area have formed initially.


1988 ◽  
Vol 11 ◽  
pp. 198 ◽  
Author(s):  
S. Anandakrishnan

Detailed seismic short-refraction profiling was conducted on Ice Stream Β (UpB) during the 1983–84 austral summer. A new high-resolution data logger, developed at the University of Wisconsin, recorded both compressional- and shear-wave arrivals. We report here on P-wave and S-wave profiles recorded along a line parallel to the axis of the ice stream. Source-receiver separations up to 720 m yielded seismic velocity-depth curves to below the firn-ice transition zone (slightly greater than 30 m at UpB). For the compressional-wave profile, geophones were separated by 2.5 m, which yielded a velocity-depth curve with a granularity of ∼1 m. The corresponding density-depth curve agrees well with direct density measurements obtained from a core extracted nearby (Alley and Bentley 1988, this volume). Discontinuities in the velocity gradient do not appear at the “critical densities” as they did at Byrd Station, Antarctica, and elsewhere (Kohnen and Bentley 1973 , Robertson and Bentley 1975). Two shear-wave profiles were recorded, both with geophone spacings of 5 m, one with longitudinal polarization (SV) and the other with transverse polarization (SH). There is a marked difference in velocity between the SH and SV waves, particularly in the shallow firn. We suggest that a strong vertical shape-and-bonding fabric in the shallow firn, as observed in cores collected at UpB, would account for this disparity.


2002 ◽  
Vol 42 (1) ◽  
pp. 627
Author(s):  
R.G. Williams ◽  
G. Roberts ◽  
K. Hawkins

Seismic energy that has been mode converted from pwave to s-wave in the sub-surface may be recorded by multi-component surveys to obtain information about the elastic properties of the earth. Since the energy converted to s-wave is missing from the p-wave an alternative to recording OBC multi-component data is to examine p-wave data for the missing energy. Since pwave velocities are generally faster than s-wave velocities, then for a given reflection point the converted s-wave signal reaches the surface at a shorter offset than the equivalent p-wave information. Thus, it is necessary to record longer offsets for p-wave data than for multicomponent data in order to measure the same information.A non-linear, wide-angle (including post critical) AVO inversion has been developed that allows relative changes in p-wave velocities, s-wave velocities and density to be extracted from long offset p-wave data. To extract amplitudes at long offsets for this inversion it is necessary to image the data correctly, including correcting for higher order moveout and possibly anisotropy if it is present.The higher order moveout may itself be inverted to yield additional information about the anisotropy of the sub-surface.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


1998 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
J. Helen Isaac ◽  
Don C. Lawton
Keyword(s):  
P Wave ◽  
S Wave ◽  

1967 ◽  
Vol 7 (02) ◽  
pp. 136-148 ◽  
Author(s):  
A.R. Gregory

Abstract A shear wave velocity laboratory apparatus and techniques for testing rock samples under simulated subsurface conditions have been developed. In the apparatus, two electromechanical transducers operating in the frequency range 0.5 to 5.0 megahertz (MHz: megacycles per second) are mounted in contact with each end of the sample. Liquid-solid interfaces of Drakeol-aluminum are used as mode converters. In the generator transducer, there is total mode conversion from P-wave energy to plain S-wave energy, S-wave energy is converted back to P-wave energy in the motor transducer. Similar transducers without mode converters are used to measure P-wave velocities. The apparatus is designed for testing rock samples under axial or uniform loading in the pressure range 0 to 12,000 psi. The transducers have certain advantages over those used by King,1 and the measurement techniques are influenced less by subjective elements than other methods previously reported. An electronic counter-timer having a resolution of 10 nanoseconds measures the transit time of ultrasonic pulses through the sample; elastic wave velocities of most homogeneous materials can be measured with errors of less than 1 percent. S- and P-wave velocity measurements on Bandera sandstone and Solenhofen limestone are reported for the axial pressure range 0 to 6,000 psi and for the uniform pressure range 0 to 10,000 psi. The influence of liquid pore saturants on P- and S-wave velocity is investigated and found to be in broad agreement with Biot's theory. In specific areas, the measurements do not conform to theory. Velocities of samples measured under axial and uniform loading are compared and, in general, velocities measured under uniform stress are higher than those measured under axial stress. Liquid pore fluids cause increases in Poisson's ratio and the bulk modulus but reduce the rigidity modulus, Young's modulus and the bulk compressibility. INTRODUCTION Ultrasonic pulse methods for measuring the shear wave velocity of rock samples in the laboratory have been gradually improved during the last few years. Early experimental pulse techniques reported by Hughes et al.2, and by Gregory3 were beset by uncertainties in determining the first arrival of the shear wave (S-wave) energy. Much of this ambiguity was caused by the multiple modes propagated by piezoelectric crystals and by boundary conversions in the rock specimens. Shear wave velocity data obtained from the critical angle method, described by Schneider and Burton4 and used later by King and Fatt5 and by Gregory,3,6 are of limited accuracy, and interpreting results is too complicated for routine laboratory work. The mode conversion method described by Jamieson and Hoskins7 was recently used by King1 for measuring the S-wave velocities of dry and liquid-saturated rock samples. Glass-air interfaces acted as mode converters in the apparatus, and much of the compressional (P-wave) energy apparently was eliminated from the desired pure shear mode. A more detailed discussion of the current status of laboratory pulse methods applied to geological specimens is given in a review by Simmons.8


Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1793-1793
Author(s):  
R. A. Ensley
Keyword(s):  
P Wave ◽  
S Wave ◽  

Mr. Winterstein is entirely correct in pointing out that the S‐wave data presented in my paper were a brute stack. In addition, the P‐wave data presented were also a brute stack.


Sign in / Sign up

Export Citation Format

Share Document