Reply by the author to H. N. Collins

Geophysics ◽  
1985 ◽  
Vol 50 (3) ◽  
pp. 505-506
Author(s):  
R. L. Carlson

In our paper on P‐wave anisotropy in deep‐sea carbonates we assessed the degree of water saturation in the samples by a weighted linear regression of [Formula: see text] on Φ in the form [Formula: see text] (1) where [Formula: see text] is bulk density, [Formula: see text] is grain density, Φ is fractional porosity, and [Formula: see text] where [Formula: see text] is fluid density.

Geophysics ◽  
1985 ◽  
Vol 50 (3) ◽  
pp. 505-505
Author(s):  
H. N. Collins

In the course of presenting data on the application of linear regression, the authors included in Figure 1 an equation representing the regression of wet‐bulk density on porosity in the form [Formula: see text], where [Formula: see text] and [Formula: see text] are wet‐bulk and grain densities, respectively, in [Formula: see text]. Based on the data of the selected samples shown in Figure 1, they have inferred a grain density of [Formula: see text], and a fluid density of [Formula: see text], not unreasonable values for a brine‐saturated calcareous sediment. However, it is incorrect to draw such inferences from this regression equation without the qualification that the independent variable, in this case porosity, is error free. Based on the porosity values shown in Table 1 (see my Table 1) those data are indeed subject to error.


1970 ◽  
Vol 10 (1) ◽  
pp. 91 ◽  
Author(s):  
J. W. Burdett ◽  
J. C. Parry ◽  
S. P. Willmott

The Barrow Island oilfield derives 97 percent of its 46,000 barrels per day production from the Lower Cretaceous Windalia Sand. The lithology of the sand, which is 110' + 20' thick across the field, is very finegrained, glauconitic sandstone, shaly and silty in parts and varying from moderately unconsolidated to firm. Thin, hard beds of dolomitic and calcareous, sandstone occur throughout. The sand has high porosity and low permeability.The argillaceous and unconsolidated nature of the formation precludes the use of log interpretation methods based on standard parameters, and it was decided to develop an empirical log evaluation method. In order to calibrate the logs, sixteen of the early wells were fully cored and logged, and the data compared using the Holgate method, which allows two parameters to be correlated to determine their relationship. In the example which is the subjert of this paper, core porosity was correlated against both sonic transit time and bulk density and hence calibration of these log parameters was obtained.The best fit straight line relating porosity and sonic transit time has its origin at 76 microseconds per foot and extrapolates to 246 microseconds per foot at 100 percent porosity. The bulk density — porosity cross plot gives a grain density of 2.71 grams per cubic centimetre and fluid density of 1.16 grans/ cc. The deviations from the standard parameters of delta-t matrix = 56. delta-t fluid = 189, grain density = 1.65, fluid density = 1.0 are explained by the shaliness and lack of compaction of the formation. Using charts for the calculation of water saturation and porosity from induction conductivity and sonic transit time (or bulk density) at 2' intervals through the sand, backed up with traced SP and caliper curves, an evaluation plot of standard format is developed. Intervals of nett effective pay are then chosen.Other evaluation techniques used during the development of the Windalia Poo! include a modified movable oil plot, used in the water injection wells where a saturated saline drilling fluid was employed, and a Sonic-Neutron log comparison for the identification of suspected gas columns in the Windalia.440 wells have now been drilled at Barrow Island, and the empirical evaluation methods evolved have enabled the definition of beds of producible hydrocarbons in all cases.


2021 ◽  
Author(s):  
David Freire-Lista ◽  
Bruno Campos ◽  
Patricia Moreira da Costa

<p>Granite is the most important building stone in the north of Portugal. The importance of the stones in this region is evidenced by the pre-Roman roots Mor (r), Mur (r) and Mour of place names such as Montemuro, Moreiras, Mouçós, and Mourelhe. These roots indicate the existence of building stones used since ancient times in these places.</p><p>The quarries of the main building stones of historical buildings were generally in the vicinity of the buildings. Formerly, stonemasons carved mason's marks on ashlars. The mason's marks are lapidary signs to indicate the work carried out by each one. The mason's marks are generally symbolised by the initial of the stonemason's name. They are often found on dressed stones in buildings and in other public structures.</p><p>Nossa Senhora de Guadalupe church of Mouçós (possibly 16<sup>th</sup> century) has typical characteristics from the late Romanesque. It is located in Vila Real (North of Portugal). It is made up of three volumes: a single nave, a lower rectangular apse, and a sacristy attached to the apse. The exterior of this church is preserved almost unaltered in its original state. Each of the granite ashlars that make up this church has a mason's mark in the center of its face.</p><p>The mason's marks of the church have been identified; all the ashlars with visible mason's marks have been mapped, and a glyptographic study has been carried out. This has made it possible to calculate the number of stonemasons that worked in the construction of the church and the number of ashlars that were transported in each carriage, and to determine the construction phases of the church.</p><p>Eight cubic samples have been cut to calculate the granite’s hydric properties (effective porosity, water absorption and bulk density) according to UNE-EN:1936. Ultrasound wave velocity was measured according to UNE-EN:14579. Furthermore, three thin sections have been made to characterise the granite petrographically under a polarisation microscope Leica DM-4500-P. A mosaic of photomicrographs has been made to evaluate the petrographic properties.</p><p>There are six main types of mason's marks in Nossa Senhora de Guadalupe Church. All quarrymen extracted the stones from the same quarry, or from nearby quarries. The mean effective porosity of the building granite is 3.2%±0.3, and the mean water absorption is 1.2%±0.1. Its mean bulk density is 2566 kg/m<sup>3</sup>±61.0 and its ultrasound P wave velocity is 2920 m/s±98.3.</p><p>The mason's marks are preserved because of the excellent petrographic and petrophysical properties of Mouçós granite. Further, Nossa Senhora de Guadalupe church was protected with lime plaster during the past centuries, and the plaster was not removed with the projection of abrasive particles.</p><p>The use of analytical techniques such as petrography, ultrasonic P wave velocity and the determination of hydric properties will guarantee the quality and durability of a sustainable restoration.</p><p>The historical quarries, forms of traditional stone extraction and uses of Mouçós granite constitute a heritage that must be safeguarded.</p><p>Acknowledgements: The Fundação para a Ciência e a Tecnologia (FCT) of Portugal. CEECIND/03568/2017.</p>


Sign in / Sign up

Export Citation Format

Share Document