scholarly journals Study on Estimation and Error of Tsunami Initial Displacement of Water Surface Using Inversion Method with a Priori Information.

2002 ◽  
pp. 117-135 ◽  
Author(s):  
Nobuaki KOIKE
Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1438-1449 ◽  
Author(s):  
Seiichi Nagihara ◽  
Stuart A. Hall

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3‐D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2‐D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA‐based gravity inversion has some advantages over the approach based on damped least‐squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.


2015 ◽  
Vol 3 (1) ◽  
pp. SA33-SA49 ◽  
Author(s):  
Qinshan Yang ◽  
Carlos Torres-Verdín

Interpretation of hydrocarbon-bearing shale is subject to great uncertainty because of pervasive heterogeneity, thin beds, and incomplete and uncertain knowledge of saturation-porosity-resistivity models. We developed a stochastic joint-inversion method specifically developed to address the quantitative petrophysical interpretation of hydrocarbon-bearing shale. The method was based on the rapid and interactive numerical simulation of resistivity and nuclear logs. Instead of property values themselves, the estimation method delivered the a posteriori probability of each property. The Markov-chain Monte Carlo algorithm was used to sample the model space to quantify the a posteriori distribution of formation properties. Additionally, the new interpretation method allows the use of fit-for-purpose statistical correlations between water saturation, salt concentration, porosity, and electrical resistivity to implement uncertain, non-Archie resistivity models derived from core data, including those affected by total organic carbon (TOC). In the case of underdetermined estimation problems, i.e., when the number of measurements was lower than the number of unknowns, the use of a priori information enabled plausible results within prespecified petrophysical and compositional bounds. The developed stochastic interpretation technique was successfully verified with data acquired in the Barnett and Haynesville Shales. Core data (including X-ray diffraction data) were combined into a priori information for interpretation of nuclear and resistivity logs. Results consisted of mineral concentrations, TOC, and porosity together with their uncertainty. Eighty percent of the core data was located within the 95% credible interval of estimated mineral/fluid concentrations.


Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 613-626 ◽  
Author(s):  
Xin‐Quan Ma

A global optimization algorithm using simulated annealing has advantages over local optimization approaches in that it can escape from being trapped in local minima and it does not require a good initial model and function derivatives to find a global minimum. It is therefore more attractive and suitable for seismic waveform inversion. I adopt an improved version of a simulated annealing algorithm to invert simultaneously for acoustic impedance and layer interfaces from poststack seismic data. The earth’s subsurface is overparameterized by a series of microlayers with constant thickness in two‐way traveltime. The algorithm is constrained using the low‐frequency impedance trend and has been made computationally more efficient using this a priori information as an initial model. A search bound of each parameter, derived directly from the a priori information, reduces the nonuniqueness problem. Application of this technique to synthetic and field data examples helps one recover the true model parameters and reveals good continuity of estimated impedance across a seismic section. This approach has the capability of revealing the high‐resolution detail needed for reservoir characterization when a reliable migrated image is available with good well ties.


Author(s):  
O.M. Nemtsova ◽  
T.M. Bannikova ◽  
V.M. Nemtsov

We discuss the problem of proper use of software packages that implement methods for solving ill-posed problems. Most of the problems of processing experimental data belong to ill-posed problems. When using methods for solving ill-posed problems, there is a problem of non-uniqueness of the solution, which is solved by introducing a priori information. Obtaining a priori information is possible in different ways, but quantitative estimates involve the use of additional methods for data analysis. Obviously, additional methods should not be more complicated and labor intensive than the main data processing method. Using the RES3DINV electrical prospecting data analysis software as an example, the role of a priori information for obtaining reliable results is demonstrated. The RES3DINV software is used to build a soil model from the measured values of resistivity using electrical survey’s methods. When using the inversion method implemented in the software package, it is necessary to set the input parameters describing the geometric dimensions of the anomalous resistance object, which are usually unknown a priori. By model objects we demonstrate how the incorrect setting of input parameters affects the result of data interpretation. We show that the vector analysis method can be used as a way to obtain a priori information. This method allows us to obtain estimates of the geometric parameters of an anomalous object, does not involve high time and resource expenses, and can be used directly at the site of field experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document