scholarly journals Seismic trace interpolation in the f‐x‐y domain

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1232-1239 ◽  
Author(s):  
Yanghua Wang

Seismic trace interpolation is implemented as a 2‐D (x, y) spatial prediction, performed separately on each frequency (f) slice. This so‐called f‐x‐y domain trace interpolation method is based on the relation that the linear prediction (LP) operator estimated at a given frequency may be used to predict data at a higher frequency but a smaller trace spacing. The relationship originally given for thef‐x domain trace interpolation is successfully extended to the f‐x‐y domain. The extension is achieved by masking the data samples selectively from the input frequency slice to design the LP operators. Two interpolation algorithms using the full‐step and the fractional‐step predictions, respectively, are developed. Both methods use an all‐azimuth prediction in the x‐y domain, but the fractional‐step prediction method is computationally more efficient. While the interpolation method can be applied to a common‐offset cube of 3‐D seismic, it can also be applied to 2‐D seismic traces for prestack data processing. Synthetic and real data examples demonstrate the capability of the interpolation method.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Michal Holčapek ◽  
Nicole Škorupová ◽  
Martin Štěpnička

The article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called S-orderings—and investigates distinct properties of such orderings. The desirable investigation of the S-orderings of extensional fuzzy numbers is directly used in the concept of S-function—a natural extension of the notion of a function that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy interpolation method, investigation of its properties and an illustrative experimental example on real data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical methods stemming from the concept of S-function and from the arithmetic of extensional fuzzy numbers in general.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
R. Pourmousa ◽  
M. Rezapour ◽  
M. Mashinchi

AbstractIn the statistical literature, truncated distributions can be used for modeling real data. Due to error of measurement in truncated continuous data, choosing a crisp trimmed point caucuses a fault inference, so using fuzzy sets to define a threshold pointmay leads us more efficient results with respect to crisp thresholds. Arellano-Valle et al. [2] defined a selection distribution for analysis of truncated data with crisp threshold. In this paper, we define fuzzy multivariate selection distribution that is an extension of the selection distributions using fuzzy threshold. A practical data set with a fuzzy threshold point is considered to investigate the relationship between high blood pressure and BMI.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 785-794 ◽  
Author(s):  
S. Spitz

Interpolation of seismic traces is an effective means of improving migration when the data set exhibits spatial aliasing. A major difficulty of standard interpolation methods is that they depend on the degree of reliability with which the various geological events can be separated. In this respect, a multichannel interpolation method is described which requires neither a priori knowledge of the directions of lateral coherence of the events, nor estimation of these directions. The method is based on the fact that linear events present in a section made of equally spaced traces may be interpolated exactly, regardless of the original spatial interval, without any attempt to determine their true dips. The predictability of linear events in the f-x domain allows the missing traces to be expressed as the output of a linear system, the input of which consists of the recorded traces. The interpolation operator is obtained by solving a set of linear equations whose coefficients depend only on the spectrum of the spatial prediction filter defined by the recorded traces. Synthetic examples show that this method is insensitive to random noise and that it correctly handles curvatures and lateral amplitude variations. Assessment of the method with a real data set shows that the interpolation yields an improved migrated section.


2000 ◽  
Vol 23 (3) ◽  
pp. 541-544 ◽  
Author(s):  
José Alexandre Felizola Diniz-Filho ◽  
Mariana Pires de Campos Telles

In the present study, we used both simulations and real data set analyses to show that, under stochastic processes of population differentiation, the concepts of spatial heterogeneity and spatial pattern overlap. In these processes, the proportion of variation among and within a population (measured by G ST and 1 - G ST, respectively) is correlated with the slope and intercept of a Mantel's test relating genetic and geographic distances. Beyond the conceptual interest, the inspection of the relationship between population heterogeneity and spatial pattern can be used to test departures from stochasticity in the study of population differentiation.


2012 ◽  
Vol 446-449 ◽  
pp. 1432-1436
Author(s):  
Suo Wang

In order to predict tunnel surrounding rock pressure, this paper puts forward a series of dynamic numerical simulative model on the tunnel excavation. According to the change of rock damage in the construction program, it adjusts dynamically the mechanical material parameters of surrounding rock. So the model achieves the purpose which is controlling and simulating the process of tunnel progressive damage. In accordance with the numerical simulative results, it analyzes the relationship between the rock parameters with the plastic strain, radial displacement. Then this paper proposes a prediction method of tunnel surrounding rock pressure based on the theory of the progressive damage and method of characteristic curve. Finally, it compares the pressure on the numerical simulative models with on the site date, and it proves that the prediction method has practical engineering value.


2017 ◽  
Vol 24 (6) ◽  
pp. 1283-1295 ◽  
Author(s):  
Tomáš Faragó ◽  
Petr Mikulík ◽  
Alexey Ershov ◽  
Matthias Vogelgesang ◽  
Daniel Hänschke ◽  
...  

An open-source framework for conducting a broad range of virtual X-ray imaging experiments,syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments,e.g.four-dimensional time-resolved tomography and laminography. The high-level interface ofsyrisis written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data.syriswas also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.


2009 ◽  
Vol 36 (9) ◽  
pp. 1539-1543
Author(s):  
Mustafa Göğüş ◽  
A. Cüneyt Gerek ◽  
A. Burcu Altan-Sakarya

Generally, measurement of flow in natural streams is accomplished by measuring the flow depth. Hence, the relationship between the water level and discharge should be obtained in advance. However, in streams with high sediment load, the bottom level may change due to sediment deposition, preventing the single relation between water level and discharge. This paper summarizes the application of a flow-measurement structure for sediment-laden streams. The proposed structure is designed and built in Turkey and has been under operation since 1998 without any sedimentation problem. The agreement between the real data obtained from the structure and the theoretical rating curve is quite reasonable.


Sign in / Sign up

Export Citation Format

Share Document