Skeletonization of aeromagnetic data

Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 478-488 ◽  
Author(s):  
D. Eaton ◽  
K. Vasudevan

Skeletonization is a syntactic pattern‐recognition method that is applied to gridded data to produce an automatic line drawing, with an associated event catalog. Previous implementations of skeletonization have been tailored for seismic data. Here, we modify that technique to render it more suitable for other types of gridded data, with particular emphasis on aeromagnetic maps. A modification from previous schemes is the use of a two‐pass approach, to reduce the effects of an otherwise problematic directional bias that discriminates against events oriented parallel to columns of the grid. The method can be used effectively for filtering aeromagnetic data on the basis of strike direction, event linearity, event amplitude, and polarity. It is based on the delineation of peak‐trough pairs (cycles), which are traced throughout the grid to form contiguous events. Cycles and events are characterized by attributes that include amplitude, polarity, and pulse width. Events are further characterized by length, average strike direction, and linearity. The event attributes are stored in a catalog, thus enabling one to perform attribute‐based analysis and data filtering. We illustrate our algorithm using two regional aeromagnetic examples from different parts of the Canadian Shield. The first, from the Great Slave Lake shear zone, is dominated by linear anomaly trends produced by faults and mafic dikes. The second, from the Manicouagan region of northeastern Quebec, contains abundant subcircular and arcuate anomaly patterns caused by large intrusive complexes and a meteorite impact structure.


Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. D1-D13 ◽  
Author(s):  
Vladimir Grechka ◽  
Andrés Pech

Deviations of P-wave reflection traveltimes from a hyperbola, called the nonhyperbolic or quartic moveout, need to be handled properly while processing long-spread seismic data. As observed nonhyperbolic moveout is usually attributed to the presence of anisotropy, we devote our paper to deriving and analyzing a general formula that describes an azimuthally varying quartic moveout coefficient in a homogeneous, weakly anisotropic medium above a dipping, mildly curved reflector. To obtain the desired expression, we consistently linearize all quantities in small stiffness perturbations from a given isotropic solid. Our result incorporates all known weak-anisotropy approximations of the quartic moveout coefficient and extends them further to triclinic media. By comparing our approximation with nonhyperbolic moveout obtained from the ray-traced reflection traveltimes, we find that the former predicts azimuthal variations of the quartic moveout when its magnitude is less than 20% of the corresponding hyperbolic moveout term. We also study the influence of reflector curvature on nonhyperbolic moveout. It turns out that the curvature produces no quartic moveout in the reflector strike direction, where the anisotropy-induced moveout nonhyperbolicity is usually nonnegligible. Thus, the presence of nonhyperbolic moveout along the reflector strike might indicate effective anisotropy.



1992 ◽  
Author(s):  
Jianchao Li ◽  
K. Larner


1998 ◽  
Author(s):  
C.A. Finn ◽  
K.C. Brenner ◽  
A.E. McCafferty ◽  
R.P. Kucks




Geophysics ◽  
1997 ◽  
Vol 62 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Colin M. Sayers

Wide‐aperture walkaway vertical seismic profile (VSP) data acquired through transversely isotropic horizontal layers can be used to determine the P phase‐slowness surface, local to a receiver array in a borehole. In the presence of dip, errors in the slowness surface may occur if the medium is assumed to be layered horizontally. If the acquisition plane is oriented parallel to the dip direction, the derived slowness is too large for sources offset from the well in the down‐dip direction and too small for sources offset from the well in the up‐dip direction. For acquisition parallel to the strike of the layers, the recovery of the P phase‐slowness in the vicinity of the receiver array is excellent. It is therefore preferable to orient the walkaway VSP in the strike direction to estimate the anisotropic parameters of the medium in the vicinity of a receiver array. However, this may not be possible. If the dip direction of all layers has the same azimuth, the variation of walkaway traveltimes with azimuth has a simple form. This allows data from a single walkaway VSP extending both sides of a well to be inverted for the local anisotropic P phase‐slowness surface at the receivers even in the presence of dip. If data are acquired at more than one azimuth, the dip direction can be determined.



2020 ◽  
Author(s):  
Samuel E. Kelley ◽  
Brent Ward ◽  
Jason Briner ◽  
Martin Ross ◽  
Philippe Normandeau ◽  
...  

<p>The Laurentide Ice Sheet (LIS) during the Pleistocene-Holocene transition provides a useful natural laboratory for examining the behavior of a mid- to high-latitude ice sheet during a period of climatically driven ice sheet thinning and retreat. While the timing and pattern of Pleistocene recession of the LIS are well-constrained along the southern and eastern margins, there is limited chronology constraining the ice margin retreat along the northwestern margin. Here we present new cosmogenic <sup>10</sup>Be exposure ages retreat of the western margin of the LIS during the Pleistocene-Holocene transition. Sampling was performed along three transects located between the northern shore of Great Slave Lake and Lac de Gras. Each of the transects is oriented parallel to the inferred ice retreat direction in an attempt to capture a regional rate of retreat. Our new <sup>10</sup>Be cosmogenic exposure ages from the southeastern Northwest Territories demonstrate that regional deglaciation occurred around 11,000 years ago. The population of ages broadly overlaps, indicating that either the retreat occurred within the resolution of our chronology or that the ice sheet experienced widespread stagnation and rapid down-wasting. These ages, not corrected for changes in atmospheric depth due to isostatic rebound, are older than minimum limiting radiocarbon constraints by ~1000 years, indicating that existing LIS reconstructions may underestimate the timing and pace of ice margin recession for this sector. Constraining the timing of the recession of the northwest sector of the LIS has the potential to inform our understanding about the damming of large proglacial lakes, such as Glacial Lake McConnell. The ages from our southern transect, collected from elevated bedrock hills, indicate LIS retreat from through the McConnell basin occurred after 12,000 years ago, and thus constitute maximum limiting constraints on the expansion of Glacial Lake McConnell southeastward into the present-day Great Slave Lake basin. Our chronology, combined with other emerging cosmogenic exposure ages constraining LIS deglaciation indicates retreat of the ice margin over 100s of kilometres during the Pleistocene-Holocene transition, exhibiting no evidence of a significant readvance during the Younger Dryas stadial.</p>



1994 ◽  
Vol 32 (2) ◽  
pp. 467-472 ◽  
Author(s):  
J.E. Womack ◽  
J.R. Cruz
Keyword(s):  


Reflexion seismic data in Railroad, Diamond, Mary’s River and Goshute Valleys provide information on their structural development that cannot be deduced solely from outcrop and well data. These valleys contain Tertiary sediments that, in dip section, define an asymmetrical basin bounded along the eastern flank by a major listric normal fault with about 3.0-4.5 km of displacement. The west flank is defined by a gentle east-dipping ramp. Seismically the trace of the listric fault is interpreted to dip westward and sole into the Palaeozoic section exploiting regionally recognized Mesozoic decollement surfaces. The Tertiary depocentre, adjacent to this fault, shifted from west to east with continued slippage through time, the greatest movement occurring in the Miocene and post-Miocene. In the strike direction, the valleys are separated into at least two subbasins by an east-west structurally high axis. The axis is postulated to be the result of a tear fault associated with movement along the listric normal fault. Tertiary stratigraphy varies between valleys and between sub-basins in a given valley. All the valleys contain Miocene and younger rocks; however, not all sub-basins contain the pre-Miocene section, suggesting a complex scheme of structural development.



Sign in / Sign up

Export Citation Format

Share Document