The recession of the Laurentide Ice Sheet in southeast Northwest Territories during the Pleistocene-Holocene transition

Author(s):  
Samuel E. Kelley ◽  
Brent Ward ◽  
Jason Briner ◽  
Martin Ross ◽  
Philippe Normandeau ◽  
...  

<p>The Laurentide Ice Sheet (LIS) during the Pleistocene-Holocene transition provides a useful natural laboratory for examining the behavior of a mid- to high-latitude ice sheet during a period of climatically driven ice sheet thinning and retreat. While the timing and pattern of Pleistocene recession of the LIS are well-constrained along the southern and eastern margins, there is limited chronology constraining the ice margin retreat along the northwestern margin. Here we present new cosmogenic <sup>10</sup>Be exposure ages retreat of the western margin of the LIS during the Pleistocene-Holocene transition. Sampling was performed along three transects located between the northern shore of Great Slave Lake and Lac de Gras. Each of the transects is oriented parallel to the inferred ice retreat direction in an attempt to capture a regional rate of retreat. Our new <sup>10</sup>Be cosmogenic exposure ages from the southeastern Northwest Territories demonstrate that regional deglaciation occurred around 11,000 years ago. The population of ages broadly overlaps, indicating that either the retreat occurred within the resolution of our chronology or that the ice sheet experienced widespread stagnation and rapid down-wasting. These ages, not corrected for changes in atmospheric depth due to isostatic rebound, are older than minimum limiting radiocarbon constraints by ~1000 years, indicating that existing LIS reconstructions may underestimate the timing and pace of ice margin recession for this sector. Constraining the timing of the recession of the northwest sector of the LIS has the potential to inform our understanding about the damming of large proglacial lakes, such as Glacial Lake McConnell. The ages from our southern transect, collected from elevated bedrock hills, indicate LIS retreat from through the McConnell basin occurred after 12,000 years ago, and thus constitute maximum limiting constraints on the expansion of Glacial Lake McConnell southeastward into the present-day Great Slave Lake basin. Our chronology, combined with other emerging cosmogenic exposure ages constraining LIS deglaciation indicates retreat of the ice margin over 100s of kilometres during the Pleistocene-Holocene transition, exhibiting no evidence of a significant readvance during the Younger Dryas stadial.</p>

2020 ◽  
Author(s):  
Christopher Halsted ◽  
Jeremy Shakun ◽  
Lee Corbett ◽  
Paul Bierman ◽  
P. Thompson Davis ◽  
...  

<p>In the northeastern United States, there are extensive geochronologic and geomorphic constraints on the deglaciation of the southeastern Laurentide Ice Sheet; thus, it is an ideal area for large-scale ice volume reconstructions and comparison between different ice retreat chronometers. Varve chronologies, lake and bog-bottom radiocarbon ages, and cosmogenic nuclide exposure ages constrain the timing of ice retreat, but the inferred ages exhibit considerable noise and sometimes disagree. Additionally, there are few empirical constraints on ice thinning, forcing ice volume reconstructions to rely on geophysically-based ice thickness models. Here, we aim to improve the understanding of the southeastern Laurentide Ice Sheet recession by (1) adding extensive ice thickness constraints and (2) compiling all available deglacial chronology data in the region to investigate discrepancies between different chronometers.</p><p>To provide insight about ice sheet thinning history, we collected 120 samples for in-situ <sup>10</sup>Be and 10 samples for in-situ <sup>14</sup>C cosmogenic exposure dating from various elevations at 13 mountains in the northeastern United States. By calculating ages of exposure at different elevations across this region, we reconstruct paleo-ice surface lowering of the southeastern Laurentide Ice Sheet during deglaciation. Where we suspect that <sup>10</sup>Be remains from pre-Last Glacial Maximum periods of exposure, in-situ <sup>14</sup>C is used to infer the erosional history and minimum exposure age of samples.</p><p>Presently, we have measured <sup>10</sup>Be in 73 samples. Mountain-top exposure ages located within 150 km of the southeastern Laurentide Ice Sheet terminal moraine indicate that near-margin thinning began early in the deglacial period (~19.5 to 17.5 ka), coincident with the slow initial margin retreat indicated by varve records. Exposure ages from several mountains further inland (>400 km north of terminal moraine) collected over ~1000 m of elevation range record rapid ice thinning between 14.5 and 13 ka. Ages within each of these vertical transects are similar within 1σ internal uncertainty, indicating that ice thinned quickly, less than a few hundred years at most. This rapid thinning occurred at about the same time that varve records indicate accelerated ice margin retreat (14.6–12.9 ka), providing evidence of substantial ice volume loss during the Bølling-Allerød warm period.</p><p>Our critical evaluation of deglacial chronometers, including valley-bottom <sup>10</sup>Be ages from this project, is intended to constrain ice margin retreat rates and timing in the region. Ultimately, we will integrate our ice thickness over time constraints with the existing network of deglacial ages to create a probabilistic reconstructions of the southeastern Laurentide Ice Sheet volume during its recession through the northeastern United States.</p>


2008 ◽  
Vol 45 (5) ◽  
pp. 593-610 ◽  
Author(s):  
Jan M. Bednarski

The Laurentide Ice Sheet reached the Canadian Cordillera during the last glacial maximum in northeastern British Columbia and adjacent Northwest Territories and all regional drainage to unglaciated areas in the north was dammed by the ice. Converging ice-flow patterns near the mountain front suggest that the Laurentide Ice Sheet likely coalesced with the Cordilleran Ice Sheet during the last glaciation. With deglaciation, the ice masses separated, but earlier ice retreat in the south meant that meltwater pooled between the mountain front and the Laurentide margin. The level of the flooding was controlled by persistent ice cover on the southern Franklin Mountains. Glacial Lake Liard formed when the Laurentide Ice Sheet retreated east of the southern Liard Range and, at its maximum extent, may have impounded water at least as far south as the Fort Nelson River. Deglaciation of the plains was marked by local variations in ice flow caused by a thin ice sheet becoming more affected by the topography and forming lobes in places. These lobes caused diversions in local drainage readily traced by abandoned meltwater channels. Radiocarbon ages from adjacent areas suggest the relative chronology of deglaciation presented here occurred between 13 and 11 ka BP.


2019 ◽  
Author(s):  
G W Hagedorn ◽  
M Ross ◽  
R C Paulen ◽  
I R Smith ◽  
C M Neudorf ◽  
...  

2021 ◽  
Author(s):  
Philip Hughes ◽  
Neil Glasser ◽  
David Fink ◽  
Jason Dortch ◽  
Reka Fülöp ◽  
...  

<p>Cosmogenic <sup>10</sup>Be and <sup>26</sup>Al exposure ages from 20 erratic samples collected from Cadair Idris (893 m), a mountain in southern Snowdonia, Wales, provide evidence for the timing of deglaciation from summits to cirques at the end of the Late Pleistocene. The summit of the mountain is characterised by intensely modified frost-shattered surfaces that have long been identified as a representing a former nunatak. Numerous glacially-transported quartz boulders on the highest ground indicate that ice overran the summit at some point in the Pleistocene. Two quartz boulders, one with preserved striations, sampled at c. 856 m near the summit of Cadair Idris yielded consistent <sup>10</sup>Be and <sup>26</sup>Al paired exposure ages of 75 ka to 60 ka (using a high-latitude sea level <sup>10</sup>Be spallation production rate of 4.20 at/g/y, scaled by the Lal/Stone scheme). A glacially polished bedrock quartzite outcrop at 735 m gave an age of 17.5 ka. Immediately below this, cirque and down-valley recessional moraine ages, covering an elevation of 480 m to 350 m ranged from 10 to 15 ka respectively.</p><p>These results confirm that Cadair Idris was overridden by the Welsh Ice Cap during marine isotope stage (MIS) 4, when ice was thicker than at the global last glacial maximum (LGM) in MIS 2. This is consistent with findings from northern Snowdonia. The highest Welsh summits, including Cadair Idris, emerged above a thinning Welsh Ice Cap (British Irish Ice Sheet) during the transition from MIS 4 to 3. The summit area above ~800 m then stood as nunataks above the LGM ice sheet surface in MIS 2. The Welsh Ice Cap then rapidly thinned over Cadair Idris at ~20-17 ka based on ages from high-level ice-moulded bedrockThis is supported by more new ages from high-level paired erratics and bedrock samples on several other mountains throughout Snowdonia, leading to a phase of alpine-style deglaciation. Valley glaciers initiated their retreat up-valley from ~17 to 14 ka after Heinrich Event 1. A later phase of glacier stabilisation or still stand formation produced classic cirque moraines near the rim of a present cirque lake basin (480 m elevation) yielding <sup>10</sup>Be ages of 13-10 ka during the Younger Dryas.</p>


2021 ◽  
Author(s):  
Brendon Quirk ◽  
Elizabeth Huss ◽  
Benjamin Laabs ◽  
Eric Leonard ◽  
Joseph Licciardi ◽  
...  

Abstract. The geologic record of mountain glaciations is a robust indicator of terrestrial paleoclimate change. During the last glaciation, mountain ranges across the western U.S. hosted glaciers while the Cordilleran and Laurentide ice sheets flowed to the west and east of the continental divide, respectively. Records detailing the chronologies and paleoclimate significance of these ice advances have been developed for many sites across North America. However, relatively few glacial records have been developed for mountain glaciers in the northern Rocky Mountains near ice sheet margins. Here, we report cosmogenic beryllium-10 surface exposure ages and numerical glacier modeling results showing that mountain glaciers in the northern Rockies abandoned terminal moraines after the end of the Last Glacial Maximum around 17–18 ka and could have been sustained by −10 to −8.5 °C temperature depressions relative to modern assuming similar or drier than modern precipitation. Additionally, we present a deglacial chronology from the northern Rocky Mountains that indicates while there is considerable variability in initial moraine abandonment ages across the Rocky Mountains, the pace of subsequent ice retreat through the Lateglacial exhibits some regional coherence. Our results provide insight on potential regional mechanisms driving the initiation of and sustained deglaciation in the western U.S. including rising atmospheric CO2 and ice sheet collapse.


2013 ◽  
Vol 80 (2) ◽  
pp. 274-283 ◽  
Author(s):  
Denis Lacelle ◽  
Bernard Lauriol ◽  
Grant Zazula ◽  
Bassam Ghaleb ◽  
Nicholas Utting ◽  
...  

This study presents new ages for the northwest section of the Laurentide Ice Sheet (LIS) glacial chronology from material recovered from two retrogressive thaw slumps exposed in the Richardson Mountains, Northwest Territories, Canada. One study site, located at the maximum glacial limit of the LIS in the Richardson Mountains, had calcite concretions recovered from aufeis buried by glacial till that were dated by U/Th disequilibrium to 18,500 cal yr BP. The second site, located on the Peel Plateau to the east yielded a fossil horse (Equus) mandible that was radiocarbon dated to ca. 19,700 cal yr BP. These ages indicate that the Peel Plateau on the eastern flanks of the Richardson Mountains was glaciated only after 18,500 cal yr BP, which is later than previous models for the global last glacial maximum (LGM). As the LIS retreated the Peel Plateau around 15,000 cal yr BP, following the age of the Tutsieta phase, we conclude that the presence of the northwestern margin of the LIS at its maximum limit was a very short event in the western Canadian Arctic.


1999 ◽  
Vol 36 (5) ◽  
pp. 791-803 ◽  
Author(s):  
Timothy G Fisher

Stratigraphic and sedimentologic field data in the Cochrane, Alberta, area demonstrate that glaciolacustrine sediment comprising the Calgary Formation underlies glaciofluvial and fluvial sediment of the Bighill Creek Formation, previously dated at 11.4 ka BP. A continuous, conformable contact between sediments of glacial Lake Calgary and underlying till indicates that the lake was coeval with initial deglaciation of the area. The lake formed during retreat of the Cordilleran ice up the Bow Valley that was once previously coalescent with the Laurentide Ice Sheet. Rhythmic, graded, and convoluted glaciolacustrine sediments record continuous and high rates of sedimentation in this reach of glacial Lake Calgary, further implying that the lake formed early in deglacial time.


2019 ◽  
Author(s):  
G W Hagedorn ◽  
R C Paulen ◽  
I R Smith ◽  
M Ross ◽  
C M Neudorf ◽  
...  

2015 ◽  
Vol 52 (11) ◽  
pp. 966-979 ◽  
Author(s):  
Karin Ebert

The erosional impacts of former ice sheets on the low-relief bedrock surfaces of Northern Hemisphere shields are not well understood. This paper assesses the variable impacts of glacial erosion on a portion of Baffin Island, eastern Canadian Arctic, between 68° and 72°N and 66° and 80°W. This tilted shield block was covered repeatedly by the Laurentide Ice Sheet during the late Cenozoic. The impact of ice-sheet erosion is examined with GIS analyses using two geomorphic parameters: lake density and terrain ruggedness. The resulting patterns generally conform to published data from other remote sensing studies, geological observations, cosmogenic exposure ages, and the distribution of the chemical index of alteration for tills. Lake density and terrain ruggedness are thereby demonstrated to be useful quantitative indicators of variable ice-sheet erosional impacts across Baffin Island. Ice-sheet erosion was most effective in the lower western parts of the lowlands, in a west–east-oriented band at around 350–400 m a.s.l., and in fjord-onset zones in the uplifted eastern region. Above the 350–400 m a.s.l. band and between the fjord-onset zones, ice-sheet erosion was not sufficient to create extensive ice-roughened or streamlined bedrock surfaces. The exception — where lake density and terrain ruggedness indicate that ice-sheet erosion had a scouring effect all across the study area — was in an area from Foxe Basin to Home Bay with elevations <400 m a.s.l. These morphological contrasts link to former ice-sheet basal thermal regimes during the Pleistocene. The zone of low glacial erosion surrounding the cold-based Barnes Ice Cap probably represents the ice cap’s greater extent during successive Pleistocene cold stages. Inter-fjord plateaus with few ice-sheet bedforms remained cold-based throughout multiple Pleistocene glaciations. In contrast, zones of high lake density and high terrain ruggedness are a result of the repeated development of fast-flowing, erosive ice in warm-based zones beneath the Laurentide Ice Sheet. These zones are linked to greater ice thickness over western lowland Baffin Island. However, adjacent lowland surfaces with similar elevations of non-eroded, weakly eroded, and ice-scoured shield bedrock indicate that—even in areas of high lake density and terrain ruggedness—the total depth of ice sheet erosion did not exceed 50 m.


Sign in / Sign up

Export Citation Format

Share Document