Finite‐difference modeling of viscoelastic materials with quality factors of arbitrary magnitude

Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 817-824 ◽  
Author(s):  
Sergey Asvadurov ◽  
Leonid Knizhnerman ◽  
Jahir Pabon

To minimize acoustic noise, designers of sonic logging tools often consider coatings of viscoelastic materials with very high attenuation properties. Efficient finite‐difference modeling of viscoelastic materials is a topic of current research. To model viscoelastic materials in the time domain through finite differences efficiently, one needs to replace the time convolution, which enters in the stress–strain relations, by a set of first‐order differential equations. This procedure is equivalent to computing a rational approximation of a certain form to the frequency‐dependent complex modulus of viscoelasticity. Known schemes for computing such approximations are designed to treat materials with low attenuation, such as underground formations, but fail to produce accurate or even physically meaningful results for highly attenuative materials. We propose a novel scheme that allows one to construct, for a given frequency range, a uniformly optimal rational approximation for the most widely used model of materials with constant quality (Q‐) factors of arbitrary magnitude. We present the proof of convergence and demonstrate it on numerical finite‐difference examples. These examples also demonstrate the effective transparency of a simple tool modeled as a pipe of highly viscoelastic material. For frequency‐dependent quality factors we present a modified numerical scheme to compute a nearly optimal rational approximation of the viscoelastic modulus.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


2021 ◽  
pp. 1-19
Author(s):  
Pierre Lemerle

Abstract Viscoelastic materials are widely used for vibroacoustic solutions due to their ability to mitigate vibration and sound. Wave propagation methods are based on the measurement of the waveform pattern of a transitory pulse in one-dimensional structures. The time evolution of the pattern can be used to deduce the material elasticity and damping characteristics. The most popular propagation methods, namely Hopkinson bar methods, assume no dispersion, i.e. the complex elasticity modulus is not frequency-dependent. This is not significant for resilient materials such as elastomers. More recent approaches have been developed to measure frequency-dependent properties from a pulse propagating in a slender bar. We showed in previous works how to adapt these techniques for shorter samples of materials, representing a real advance, as extrusion is a cumbersome process for many materials. The main concept was to reconstruct the time history of the wave propagating in a composite structure composed of a long incident bar made of a known material and extended by a shorter sample bar. Then the viscoelastic properties of the sample material were determined in the frequency domain within an inverse method held in the time domain. In industry, most isolation solutions using mounts or bushings must support structural weights. This is why it is particularly interesting to know the viscoelastic properties of the material in stressed state. Here, we show how to overcome this challenging issue. The theoretical framework of the computational approach is detailed and the method is experimentally verified.


Author(s):  
Aziza Mahomed ◽  
David W. Hukins ◽  
Duncan E. T. Shepherd ◽  
Stephen N. Kukureka

Elastomers, such as silicone, are currently used for many designs of artificial finger and wrist joints because they are inert, durable, flexible and allow the necessary range of movements [1–6]. The disadvantage of these silicone joints is that they fracture in vivo [3,5,7]. In addition, these elastomers are viscoelastic so that their properties may depend on loading frequency. It is then possible that the performance of the joints may be frequency dependent. As a first stage in investigating such effects, we have determined the storage and loss moduli of a medical grade silicone in compression.


Sign in / Sign up

Export Citation Format

Share Document