scholarly journals A new iterative solver for the time-harmonic wave equation

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. E57-E63 ◽  
Author(s):  
C. D. Riyanti ◽  
Y. A. Erlangga ◽  
R.-E. Plessix ◽  
W. A. Mulder ◽  
C. Vuik ◽  
...  

The time-harmonic wave equation, also known as the Helmholtz equation, is obtained if the constant-density acoustic wave equation is transformed from the time domain to the frequency domain. Its discretization results in a large, sparse, linear system of equations. In two dimensions, this system can be solved efficiently by a direct method. In three dimensions, direct methods cannot be used for problems of practical sizes because the computational time and the amount of memory required become too large. Iterative methods are an alternative. These methods are often based on a conjugate gradient iterative scheme with a preconditioner that accelerates its convergence. The iterative solution of the time-harmonic wave equation has long been a notoriously difficult problem in numerical analysis. Recently, a new preconditioner based on a strongly damped wave equation has heralded a breakthrough. The solution of the linear system associated with the preconditioner is approximated by another iterative method, the multigrid method. The multigrid method fails for the original wave equation but performs well on the damped version. The performance of the new iterative solver is investigated on a number of 2D test problems. The results suggest that the number of required iterations increases linearly with frequency, even for a strongly heterogeneous model where earlier iterative schemes fail to converge. Complexity analysis shows that the new iterative solver is still slower than a time-domain solver to generate a full time series. We compare the time-domain numeric results obtained using the new iterative solver with those using the direct solver and conclude that they agree very well quantitatively. The new iterative solver can be applied straightforwardly to 3D problems.

2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Rita Greco ◽  
Giuseppe Carlo Marano ◽  
Alessandra Fiore ◽  
Ivo Vanzi

A widely used approach for the first crossing reliability evaluation of structures subject to nonstationary Gaussian random input is represented by the direct extension to the nonstationary case of the solution based on the qualified envelope, originally proposed for stationary cases. The most convenient way to approach this evaluation relies on working in the time domain, where a common assumption used is to adopt the modulation of stationary envelope process instead of the envelope of modulated stationary one, by utilizing the so-called “preenvelope” process. The described assumption is demonstrated in this work, also showing that such assumption can induce some errors in the envelope mean crossing rate.


Time-dependent particle-like pulses are considered as asymptotic solutions of the classical wave equation. The wave packets are localized in space with gaussian envelopes. The pulse centres propagate along the rays of the wave equation, and the envelope parameters satisfy evolution equations very similar to the ray equations for time-harmonic disturb­ances. However, the present theory contains an extra degree of freedom not found in the time-harmonic theory. Explicit results are presented for media with constant velocity gradients, and interesting new phenomena are identified. For example, a pulse that is initially long in the direction of propagation and comparatively narrow in the orthogonal direction, maintains its initial spatial orientation even as the propagation direction rotates. The reflection and transmission of a pulse incident upon an interface are also discussed. The various theoretical results are illustrated by numerical simulations. This method of solution could be very useful for fast forward modelling in large-scale structures. It is formulated explicitly in the time domain and does not suffer from unphysical singularities at caustics.


Author(s):  
Liping Liu ◽  
Earl H. Dowell

This paper describes the extension and application of a novel solution method for the periodic nonlinear oscillations of an aeroelastic system. This solution method is a very attractive alternative to time marching algorithms in that it is much faster and may track unstable as well as stable limit cycles. The method is employed to analyze the nonlinear aeroelastic response of a two dimensional airfoil including a control surface with freeplay placed in an incompressible flow. The mathematical model for this piecewise aeroelastic system is initially formulated as a set of first order ordinary differential equations. A frequency domain solution for the limit cycle oscillations is derived by a novel high dimensional harmonic balance (HDHB) method. By an inverse Fourier transformation, the system in the frequency domain is then converted into the time domain. Finally, the airfoil motions are obtained by solving the system in the time domain for only one period of limit cycle oscillation. This process can be easily implemented into computer programs without going through the complex algebraic manipulations for the nonlinearities typical of a more conventional harmonic balance solution method. The solutions found using this new HDHB method have been shown to be the same as those found using a more traditional time marching (e.g. Runge-Kutta) approach and also a conventional harmonic balance approach in the frequency domain with a considerable computational time saving.


1965 ◽  
Vol 61 (1) ◽  
pp. 275-278 ◽  
Author(s):  
W. E. Williams

It has been shown in recent years ((5)–(8), (10)) that it is possible to obtain closed form solutions for the time harmonic wave equation when a linear combination of the wave function and its normal derivative is prescribed on the surface of a wedge. Boundary-value problems of this type occur in the problem of diffraction by a highly conducting wedge or by a wedge whose surfaces are thinly coated with dielectric. In certain circumstances such surfaces can support surface waves and one important aspect of the solution of the boundary-value problem is the determination of the amplitude of the surface wave excited.


Author(s):  
Alexey D. Agaltsov ◽  
Roman G. Novikov

AbstractWe consider a model time-harmonic wave equation of acoustic tomography of moving fluid in an open bounded domain in ℝ


Sign in / Sign up

Export Citation Format

Share Document