scholarly journals Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. R131-R138 ◽  
Author(s):  
Julian Ivanov ◽  
Richard D. Miller ◽  
Jianghai Xia ◽  
Don Steeples ◽  
Choon B. Park

We describe a possible solution to the inverse refraction-traveltime problem (IRTP) that reduces the range of possible solutions (nonuniqueness). This approach uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data. This confirmed our conclusion that the proposed method is an advancement in the IRTP analysis. The unique basic principles of the JARS method might be applicable to other inverse geophysical problems.

Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 800-808 ◽  
Author(s):  
Choon B. Park ◽  
Richard D. Miller ◽  
Jianghai Xia

The frequency‐dependent properties of Rayleigh‐type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface‐wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental‐mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source‐generated noise inhibits the reliability of shear‐wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental‐mode Rayleigh waves (noise) are body waves, scattered and nonsource‐generated surface waves, and higher‐mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear‐wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace‐to‐trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable‐frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real‐time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface‐wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single‐measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept‐frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear‐wave velocity ([Formula: see text]) profile with a downhole [Formula: see text] profile.


2021 ◽  
Vol 19 (6) ◽  
pp. 2343-2370
Author(s):  
Federico Passeri ◽  
Cesare Comina ◽  
Sebastiano Foti ◽  
Laura Valentina Socco

AbstractThe compilation and maintenance of experimental databases are of crucial importance in all research fields, allowing for researchers to develop and test new methodologies. In this work, we present a flat-file database of experimental dispersion curves and shear wave velocity profiles, mainly from active surface wave testing, but including also data from passive surface wave testing and invasive methods. The Polito Surface Wave flat-file Database (PSWD) is a gathering of experimental measurements collected within the past 25 years at different Italian sites. Discussion on the database content is reported in this paper to evaluate some statistical properties of surface wave test results. Comparisons with other methods for shear wave velocity measurements are also considered. The main novelty of this work is the homogeneity of the PSWD in terms of processing and interpretation methods. A common processing strategy and a new inversion approach were applied to all the data in the PSWD to guarantee consistency. The PSWD can be useful for further correlation studies and is made available as a reference benchmark for the validation and verification of novel interpretation procedures by other researchers.


2018 ◽  
Vol 203 ◽  
pp. 04009
Author(s):  
Nor Faizah Bawadi ◽  
Nur Jihan Syamimi Jafri ◽  
Ahmad Faizal Mansor ◽  
Mohd Asri Ab Rahim

The shear wave velocity (Vs) is an important dynamic parameter in the field of geotechnical engineering. One of the surface wave methods is Spectral Analysis of Surface Wave (SASW) has received attention in obtaining the shear wave velocity (Vs) profile by analysing the dispersion curve. SASW is a non-destructive test, fast and time-effective for field survey. Thus, this paper proposed the application of SASW method to obtain the shear wave velocity (Vs) to represent the soil profile. This paper aims to determine the shear wave velocity (Vs) profile using SASW method, where the testing has been conducted at three site of residual soils located in Damansara, Kuala Lumpur and Nilai area. In this study, it shows that the soil profile obtained from shear wave velocity value is similar pattern with profile that obtained using Standard Penetration Testing (SPT), which conventional used in field. The shear wave velocity are proportionally increase with depth.


Sign in / Sign up

Export Citation Format

Share Document