On the relationships between depth migration of controlled-source electromagnetic and seismic data

2007 ◽  
Vol 26 (3) ◽  
pp. 342-347 ◽  
Author(s):  
Ketil Hokstad ◽  
Tage Røsten
Author(s):  
E.A. Danko ◽  
◽  
A.V. Gaiduk ◽  
D.N. Tverdokhlebov ◽  
E.I. Goguzeva ◽  
...  

2003 ◽  
Vol 46 (6) ◽  
pp. 1176-1185 ◽  
Author(s):  
Shengchang CHEN ◽  
Jingzhong CAO ◽  
Zaitian MA

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1241-1247 ◽  
Author(s):  
Linus Pasasa ◽  
Friedemann Wenzel ◽  
Ping Zhao

Prestack Kirchhoff depth migration is applied successfully to shallow seismic data from a waste disposal site near Arnstadt in Thuringia, Germany. The motivation behind this study was to locate an underground building buried in a waste disposal. The processing sequence of the prestack migration is simplified significantly as compared to standard common (CMP) data processing. It includes only two parts: (1) velocity‐depth‐model estimation and (2) prestack depth migration. In contrast to conventional CMP stacking, prestack migration does not require a separation of reflections and refractions in the shot data. It still provides an appropriate image. Our data example shows that a superior image can be achieved that would contain not just subtle improvements but a qualitative step forward in resolution and signal‐to‐noise ratio.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. S231-S248 ◽  
Author(s):  
Huub Douma ◽  
Maarten V. de Hoop

Curvelets are plausible candidates for simultaneous compression of seismic data, their images, and the imaging operator itself. We show that with curvelets, the leading-order approximation (in angular frequency, horizontal wavenumber, and migrated location) to common-offset (CO) Kirchhoff depth migration becomes a simple transformation of coordinates of curvelets in the data, combined with amplitude scaling. This transformation is calculated using map migration, which employs the local slopes from the curvelet decomposition of the data. Because the data can be compressed using curvelets, the transformation needs to be calculated for relatively few curvelets only. Numerical examples for homogeneous media show that using the leading-order approximation only provides a good approximation to CO migration for moderate propagation times. As the traveltime increases and rays diverge beyond the spatial support of a curvelet; however, the leading-order approximation is no longer accurate enough. This shows the need for correction beyond leading order, even for homogeneous media.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2019 ◽  
Vol 38 (4) ◽  
pp. 268-273
Author(s):  
Maheswara Phani ◽  
Sushobhan Dutta ◽  
Kondal Reddy ◽  
Sreedurga Somasundaram

Raageshwari Deep Gas (RDG) Field is situated in the southern part of the Barmer Basin in Rajasthan, India, at a depth of 3000 m. With both clastic and volcanic lithologies, the main reservoirs are tight, and hydraulic fracturing is required to enhance productivity, especially to improve permeability through interaction of induced fractures with natural fractures. Therefore, optimal development of the RDG Field reservoirs requires characterization of faults and natural fractures. To address this challenge, a wide-azimuth 3D seismic data set over the RDG Field was processed to sharply define faults and capture anisotropy related to open natural fractures. Anisotropy was indicated by the characteristic sinusoidal nature of gather reflection events processed using conventional tilted transverse imaging (TTI); accordingly, we used orthorhombic imaging to correct for these, to quantify fracture-related anisotropy, and to yield a more correct subsurface image. During prestack depth migration (PSDM) processing of the RDG data, TTI and orthorhombic velocity modeling was done with azimuthal sectoring of reflection arrivals. The resultant PSDM data using this velocity model show substantial improvement in image quality and vertical resolution at the reservoir level compared to vintage seismic data. The improved data quality enabled analysis of specialized seismic attributes like curvature and thinned fault likelihood for more reliable characterization of faults and fractures. These attributes delineate the location and distribution of probable fracture networks within the volcanic reservoirs. Interpreted subtle faults, associated with fracture zones, were validated with microseismic, production, and image log data.


Sign in / Sign up

Export Citation Format

Share Document