Redatuming through a salt canopy and target-oriented salt-flank imaging

Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. S63-S71 ◽  
Author(s):  
Rongrong Lu ◽  
Mark Willis ◽  
Xander Campman ◽  
Jonathan Ajo-Franklin ◽  
M. Nafi Toksöz

We describe a new shortcut strategy for imaging the sediments and salt edge around a salt flank through an overburden salt canopy. We tested its performance and capabilities on 2D synthetic acoustic seismic data from a Gulf of Mexico style model. We first redatumed surface shots, using seismic interferometry, from a walkaway vertical seismic profile survey as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process creates effective downhole shot gathers by completely moving surface shots through the salt canopy, without any knowledge of overburden velocity structure. After redatuming, we can apply multiple passes of prestack migration from the reference datum of the bore-hole. In our example, first-pass migration, using only a simple vertical velocity gradient model, reveals the outline of the salt edge. A second pass of reverse-time, prestack depth migration using full two-way wave equation was performed with an updated velocity model that consisted of the velocity gradient and salt dome. The second-pass migration brings out dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank, forming prismatic reflections. In this target-oriented strategy, the computationally fast redatuming process eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove effects of the salt canopy and surrounding overburden. This might allow this strategy to be used in the field in near real time.

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 546-556 ◽  
Author(s):  
Herman Chang ◽  
John P. VanDyke ◽  
Marcelo Solano ◽  
George A. McMechan ◽  
Duryodhan Epili

Portable, production‐scale 3-D prestack Kirchhoff depth migration software capable of full‐volume imaging has been successfully implemented and applied to a six‐million trace (46.9 Gbyte) marine data set from a salt/subsalt play in the Gulf of Mexico. Velocity model building and updates use an image‐driven strategy and were performed in a Sun Sparc environment. Images obtained by 3-D prestack migration after three velocity iterations are substantially better focused and reveal drilling targets that were not visible in images obtained from conventional 3-D poststack time migration. Amplitudes are well preserved, so anomalies associated with known reservoirs conform to the petrophysical predictions. Prototype development was on an 8-node Intel iPSC860 computer; the production version was run on an 1824-node Intel Paragon computer. The code has been successfully ported to CRAY (T3D) and Unix workstation (PVM) environments.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE211-VE216 ◽  
Author(s):  
Jacobus Buur ◽  
Thomas Kühnel

Many production targets in greenfield exploration are found in salt provinces, which have highly complex structures as a result of salt formation over geologic time. Difficult geologic settings, steep dips, and other wave-propagation effects make reverse-time migration (RTM) the migration method of choice, rather than Kirchhoff migration or other (by definition approximate) one-way equation methods. Imaging of the subsurface using any depth-migration algorithm can be done successfully only when the quality of the prior velocity model is sufficient. The (velocity) model-building loop is an iterative procedure for improving the velocity model. This is done by obtaining certain measurements (residual moveout) on image gathers generated during the migration procedure; those measurements then are input into tomographic updating. Commonly RTM is applied around salt bodies, where building the velocity model fails essentially because tomography is ray-trace based. Our idea is to apply RTM directly inside the model-building loop but to do so without using the image gathers. Although the process is costly, we migrate the full frequency content of the data to create a high-quality stack. This enhances the interpretation of top and bottom salt significantly and enables us to include the resulting salt geometry in the velocity model properly. We demonstrate our idea on a 2D West Africa seismic line. After several model-building iterations, the result is a dramatically improved velocity model. With such a good model as input, the final RTM confirms the geometry of the salt bodies and basically the salt interpretation, and yields a compelling image of the subsurface.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 154-163 ◽  
Author(s):  
Toru Takahashi

When prestack depth migration is applied to field data, migration artifacts or false images resulting from limited observation geometry or aperture often make it difficult to interpret the migrated images. The occurrence of artifacts is especially a problem on VSP data that usually have poor geometry for migration. To reduce such unwanted artifacts in migration images, I propose here that information about incident angles or polarization directions of scattered waves at a receiving point obtained from multicomponent data be incorporated into the extrapolation of wavefields in migration. In this method, a given arrival of a wave from a subsurface scatterer is extrapolated in the direction focused on its incident direction at a receiving point to improve the migration image of the scatterer. This focusing is achieved by a projection of observed multicomponent scattered data onto the expected polarization direction at a receiving point for a subsurface scatterer. Numerical examples using simple 2-D and 3-D homogeneous models show that the multicomponent migration presented here can largely decrease migration artifacts or false images. Numerical experiments with more realistic models reveal that multicomponent migration can provide interpretable migration images even for very limited observation geometry such as a single source offset VSP, where single‐component migration fails. Additional tests indicate that this multicomponent migration method can be useful even in case where the observed data contain noise and a background velocity model deviates from the true velocity structure.


Geophysics ◽  
2020 ◽  
pp. 1-45
Author(s):  
German Garabito ◽  
Paul L. Stoffa ◽  
Yuri S. F. Bezerra ◽  
João L. Caldeira

The application of the reverse time migration (RTM) in land seismic data is still a great challenge due to its low quality, low signal-to-noise ratio, irregular spatial sampling, acquisition gaps, missing traces, etc. Therefore, prior to the application of this kind of depth migration, the input pre-stack data must be conveniently preconditioned, that is, it must be interpolated, regularized, and enhanced. There are several methods for seismic data preconditioning, but for 2D real land data, the regularization of pre-stack data based on common reflection surface (CRS) stack method provides high quality enhanced preconditioned data, which is suitable for pre-stack depth migration and velocity model building. This work demonstrates the potential of RTM combined with CRS-based pre-stack data regularization, applied to real land seismic data with low quality and irregularly sparse spatial sampled, from geologically complex areas with the presence of diabase sills and steep dip reflections. Usually, determining the wavelet of the seismic source from land data is a challenge, because of this, RTM migration is often applied using artificial sources (e.g. Ricker). In this work, from the power spectrum of the pre-stacked data, we determine the wavelet of the seismic source to apply the RTM to real land data. We present applications of the pre-stack data preconditioning based on CRS stack and of the RTM in 2D land data of Tacutu and Parnaiba Basins, Brazil. Comparisons with the standard Kirchhoff depth migration reveals that the RTM improves the quality and resolution of the migrated images.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


1996 ◽  
Vol 15 (6) ◽  
pp. 751-753 ◽  
Author(s):  
Y. C. Kim ◽  
C. M. Samuelsen ◽  
T. A. Hauge

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. U21-U29
Author(s):  
Gabriel Fabien-Ouellet ◽  
Rahul Sarkar

Applying deep learning to 3D velocity model building remains a challenge due to the sheer volume of data required to train large-scale artificial neural networks. Moreover, little is known about what types of network architectures are appropriate for such a complex task. To ease the development of a deep-learning approach for seismic velocity estimation, we have evaluated a simplified surrogate problem — the estimation of the root-mean-square (rms) and interval velocity in time from common-midpoint gathers — for 1D layered velocity models. We have developed a deep neural network, whose design was inspired by the information flow found in semblance analysis. The network replaces semblance estimation by a representation built with a deep convolutional neural network, and then it performs velocity estimation automatically with recurrent neural networks. The network is trained with synthetic data to identify primary reflection events, rms velocity, and interval velocity. For a synthetic test set containing 1D layered models, we find that rms and interval velocity are accurately estimated, with an error of less than [Formula: see text] for the rms velocity. We apply the neural network to a real 2D marine survey and obtain accurate rms velocity predictions leading to a coherent stacked section, in addition to an estimation of the interval velocity that reproduces the main structures in the stacked section. Our results provide strong evidence that neural networks can estimate velocity from seismic data and that good performance can be achieved on real data even if the training is based on synthetics. The findings for the 1D problem suggest that deep convolutional encoders and recurrent neural networks are promising components of more complex networks that can perform 2D and 3D velocity model building.


Sign in / Sign up

Export Citation Format

Share Document