3-D prestack Kirchhoff depth migration: From prototype to production in a massively parallel processor environment

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 546-556 ◽  
Author(s):  
Herman Chang ◽  
John P. VanDyke ◽  
Marcelo Solano ◽  
George A. McMechan ◽  
Duryodhan Epili

Portable, production‐scale 3-D prestack Kirchhoff depth migration software capable of full‐volume imaging has been successfully implemented and applied to a six‐million trace (46.9 Gbyte) marine data set from a salt/subsalt play in the Gulf of Mexico. Velocity model building and updates use an image‐driven strategy and were performed in a Sun Sparc environment. Images obtained by 3-D prestack migration after three velocity iterations are substantially better focused and reveal drilling targets that were not visible in images obtained from conventional 3-D poststack time migration. Amplitudes are well preserved, so anomalies associated with known reservoirs conform to the petrophysical predictions. Prototype development was on an 8-node Intel iPSC860 computer; the production version was run on an 1824-node Intel Paragon computer. The code has been successfully ported to CRAY (T3D) and Unix workstation (PVM) environments.

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. S63-S71 ◽  
Author(s):  
Rongrong Lu ◽  
Mark Willis ◽  
Xander Campman ◽  
Jonathan Ajo-Franklin ◽  
M. Nafi Toksöz

We describe a new shortcut strategy for imaging the sediments and salt edge around a salt flank through an overburden salt canopy. We tested its performance and capabilities on 2D synthetic acoustic seismic data from a Gulf of Mexico style model. We first redatumed surface shots, using seismic interferometry, from a walkaway vertical seismic profile survey as if the source and receiver pairs had been located in the borehole at the positions of the receivers. This process creates effective downhole shot gathers by completely moving surface shots through the salt canopy, without any knowledge of overburden velocity structure. After redatuming, we can apply multiple passes of prestack migration from the reference datum of the bore-hole. In our example, first-pass migration, using only a simple vertical velocity gradient model, reveals the outline of the salt edge. A second pass of reverse-time, prestack depth migration using full two-way wave equation was performed with an updated velocity model that consisted of the velocity gradient and salt dome. The second-pass migration brings out dipping sediments abutting the salt flank because these reflectors were illuminated by energy that bounced off the salt flank, forming prismatic reflections. In this target-oriented strategy, the computationally fast redatuming process eliminates the need for the traditional complex process of velocity estimation, model building, and iterative depth migration to remove effects of the salt canopy and surrounding overburden. This might allow this strategy to be used in the field in near real time.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.


Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 568-576 ◽  
Author(s):  
Young C. Kim ◽  
Worth B. Hurt, ◽  
Louis J. Maher ◽  
Patrick J. Starich

The transformation of surface seismic data into a subsurface image can be separated into two components—focusing and positioning. Focusing is associated with ensuring the data from different offsets are contributing constructively to the same event. Positioning involves the transformation of the focused events into a depth image consistent with a given velocity model. In prestack depth migration, both of these operations are achieved simultaneously; however, for 3-D data, the cost is significant. Prestack time migration is much more economical and focuses events well even in the presence of moderate velocity variations, but suffers from mispositioning problems. Hybrid migration is a cost‐effective depth‐imaging approach that uses prestack time migration for focusing; inverse migration for the removal of positioning errors; and poststack depth migration for proper positioning. When lateral velocity changes are moderate, the hybrid technique can generate a depth image that is consistent with a velocity field. For very complex structures that require prestack depth migration, the results of the hybrid technique can be used to create a starting velocity model, thereby reducing the number of iterations for velocity model building.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE211-VE216 ◽  
Author(s):  
Jacobus Buur ◽  
Thomas Kühnel

Many production targets in greenfield exploration are found in salt provinces, which have highly complex structures as a result of salt formation over geologic time. Difficult geologic settings, steep dips, and other wave-propagation effects make reverse-time migration (RTM) the migration method of choice, rather than Kirchhoff migration or other (by definition approximate) one-way equation methods. Imaging of the subsurface using any depth-migration algorithm can be done successfully only when the quality of the prior velocity model is sufficient. The (velocity) model-building loop is an iterative procedure for improving the velocity model. This is done by obtaining certain measurements (residual moveout) on image gathers generated during the migration procedure; those measurements then are input into tomographic updating. Commonly RTM is applied around salt bodies, where building the velocity model fails essentially because tomography is ray-trace based. Our idea is to apply RTM directly inside the model-building loop but to do so without using the image gathers. Although the process is costly, we migrate the full frequency content of the data to create a high-quality stack. This enhances the interpretation of top and bottom salt significantly and enables us to include the resulting salt geometry in the velocity model properly. We demonstrate our idea on a 2D West Africa seismic line. After several model-building iterations, the result is a dramatically improved velocity model. With such a good model as input, the final RTM confirms the geometry of the salt bodies and basically the salt interpretation, and yields a compelling image of the subsurface.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB169-WB174 ◽  
Author(s):  
Shuo Ji ◽  
Tony Huang ◽  
Kang Fu ◽  
Zhengxue Li

For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach.


Geophysics ◽  
1994 ◽  
Vol 59 (3) ◽  
pp. 439-449 ◽  
Author(s):  
David N. Whitcombe

This work provides explorationists with simple procedures to perform depth conversion more accurately than can be achieved with simple vertical layer cake depth conversion. The use of image rays, which are inadequate in structurally complex areas, is avoided. Migrated time interpretations are still used and are "demigrated" using the Kirchhoff time migration equations. This backs out the effect of the time migration prior to a ray depth migration and enables the lateral shifts between the time migrated image and a depth migrated image to be quantified. These shifts can be separated into a mismigration component and a refraction component. The relative size of the components define whether time or depth migration is required and may be used to justify a remigration of the seismic image. Furthermore, the tedious layer by layer approach to ray depth migration may be avoided by using the velocity depth model from the vertical layer cake depth conversion of the time‐migrated data for ray depth migration of the unmigrated data for all horizons in a single step. A satisfactory result is usually achieved without the need to iterate. These methods are illustrated with both a synthetic example and a real 3-D data set from the Norwegian North Sea.


Geophysics ◽  
2020 ◽  
pp. 1-45
Author(s):  
German Garabito ◽  
Paul L. Stoffa ◽  
Yuri S. F. Bezerra ◽  
João L. Caldeira

The application of the reverse time migration (RTM) in land seismic data is still a great challenge due to its low quality, low signal-to-noise ratio, irregular spatial sampling, acquisition gaps, missing traces, etc. Therefore, prior to the application of this kind of depth migration, the input pre-stack data must be conveniently preconditioned, that is, it must be interpolated, regularized, and enhanced. There are several methods for seismic data preconditioning, but for 2D real land data, the regularization of pre-stack data based on common reflection surface (CRS) stack method provides high quality enhanced preconditioned data, which is suitable for pre-stack depth migration and velocity model building. This work demonstrates the potential of RTM combined with CRS-based pre-stack data regularization, applied to real land seismic data with low quality and irregularly sparse spatial sampled, from geologically complex areas with the presence of diabase sills and steep dip reflections. Usually, determining the wavelet of the seismic source from land data is a challenge, because of this, RTM migration is often applied using artificial sources (e.g. Ricker). In this work, from the power spectrum of the pre-stacked data, we determine the wavelet of the seismic source to apply the RTM to real land data. We present applications of the pre-stack data preconditioning based on CRS stack and of the RTM in 2D land data of Tacutu and Parnaiba Basins, Brazil. Comparisons with the standard Kirchhoff depth migration reveals that the RTM improves the quality and resolution of the migrated images.


2018 ◽  
Vol 6 (1) ◽  
pp. T1-T13
Author(s):  
Bin Lyu ◽  
Qin Su ◽  
Kurt J. Marfurt

Although the structures associated with overthrust terrains form important targets in many basins, accurately imaging remains challenging. Steep dips and strong lateral velocity variations associated with these complex structures require prestack depth migration instead of simpler time migration. The associated rough topography, coupled with older, more indurated, and thus high-velocity rocks near or outcropping at the surface often lead to seismic data that suffer from severe statics problems, strong head waves, and backscattered energy from the shallow section, giving rise to a low signal-to-noise ratio that increases the difficulties in building an accurate velocity model for subsequent depth migration. We applied a multidomain cascaded noise attenuation workflow to suppress much of the linear noise. Strong lateral velocity variations occur not only at depth but near the surface as well, distorting the reflections and degrading all deeper images. Conventional elevation corrections followed by refraction statics methods fail in these areas due to poor data quality and the absence of a continuous refracting surface. Although a seismically derived tomographic solution provides an improved image, constraining the solution to the near-surface depth-domain interval velocities measured along the surface outcrop data provides further improvement. Although a one-way wave-equation migration algorithm accounts for the strong lateral velocity variations and complicated structures at depth, modifying the algorithm to account for lateral variation in illumination caused by the irregular topography significantly improves the image, preserving the subsurface amplitude variations. We believe that our step-by-step workflow of addressing the data quality, velocity model building, and seismic imaging developed for the Tuha Basin of China can be applied to other overthrust plays in other parts of the world.


Sign in / Sign up

Export Citation Format

Share Document