arrival angle
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
William D. Frazer ◽  
Adrian K. Doran ◽  
Gabi Laske

Abstract Surface-wave arrival angles are an important secondary set of observables to constrain Earth’s 3D structure. These data have also been used to refine information on the alignments of horizontal seismometer components with the geographic coordinate system. In the past, particle motion has been inspected and analyzed on single three-component seismograms, one at a time. But the advent of large, dense seismic networks has made this approach tedious and impractical. Automated toolboxes are now routinely used for datasets in which station operators cannot determine the orientation of a seismometer upon deployment, such as conventional free-fall ocean bottom seismometers. In a previous paper, we demonstrated that our automated Python-based toolbox Doran–Laske-Orientation-Python compares favorably with traditional approaches to determine instrument orientations. But an open question has been whether the technique also provides individual high-quality measurements for an internally consistent dataset to be used for structural imaging. For this feasibility study, we compared long-period Rayleigh-wave arrival angles at frequencies between 10 and 25 mHz for 10 earthquakes during the first half of 2009 that were recorded at the USArray Transportable Array—a component of the EarthScope program. After vigorous data vetting, we obtained a high-quality dataset that compares favorably with an arrival angle database compiled using our traditional interactive screen approach, particularly at frequencies 20 mHz and above. On the other hand, the presence of strong Love waves may hamper the automated measurement process as currently implemented.



2021 ◽  
Vol 7 (2) ◽  
pp. 51-67
Author(s):  
G. Fokin ◽  
A. Vladyko

This work is devoted to the study of models and methods for improving posi-tioning accuracy in ultra-dense V2X/5G radio access networks for vehicles during maneuvers by combining range and angle primary measurements with measurements of inertial navigation systems in the extended Kalman filter. Onboard platformless inertial navigation system is represented by three-axis accelerometer and gyroscope modules. Integration of primary inertial measurements of acceleration and angular velocity with primary radio measurements of range and angle is carried out by converting the inertial coordinate system of the accelerometer and gyroscope into coordinate system of vehicle using quaternions. Secondary processing of inertial and radio measurements is carried out in the extended Kalman filter. The integration results show an increase in the accuracy of estimating the trajectory of a vehicle from several meters to one meter when turning at an inter-section.



2021 ◽  
Author(s):  
On Ki Angel Ling ◽  
Simon Stähler ◽  
Domenico Giardini ◽  
the AlpArray Working Group

<p>The AlpArray Seismic Network (AASN) is a large-scale multidisciplinary seismic network in Europe that consists of over 600 3-component (3C) broadband stations with mean inter-station distance of 30-40km. This dense array allows the recording of the seismic wave propagation of distant earthquakes at a resolution of typical body and surface waves.</p><p>By animating the spatially-dense seismic recordings of the AASN, we can visualize seismic waves propagating across the European Alps as a function of space and time. Our 3C ground motion animations illustrate the full spatial-temporal evolution of global body and surface waves and demonstrates how a dense array allows the transformation from translation measurements at single stations to spatial gradients of the wavefield at the surface, capturing both small- and large-scale wave propagation phenomena. The addition of travel-time estimation, ray path illustration, and array-specific information such as slowness vector of incoming waves facilitate identification of seismic phases and their arrival-angle deviations. We will highlight some interesting observations of different seismic wave types in the animations of a few example teleseismic events during the course of the AASN between 2016-2019. Application for future research and education will also be discussed.</p>





2021 ◽  
Vol 70 (8) ◽  
pp. 084303-084303
Author(s):  
Jiang Si-Yi ◽  
◽  
Fu Ning ◽  
Qiao Li-Yan ◽  
Peng Xi-Yuan


2021 ◽  
Vol 44 (1) ◽  
pp. 172-180
Author(s):  
Hongyan Li ◽  
Shaoming He ◽  
Jiang Wang ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos




2020 ◽  
Vol 224 (3) ◽  
pp. 1477-1504
Author(s):  
Petr Kolínský ◽  
Götz Bokelmann ◽  

SUMMARY To calculate phase-velocity dispersion curves, we introduce a method which reflects both structural and dynamic effects of wave propagation and interference. Rayleigh-wave fundamental-mode surface waves from the South Atlantic Ocean earthquake of 19 August 2016, M = 7.4, observed at the AlpArray network in Europe are strongly influenced by the upper-mantle low-velocity zone under the Cameroon Volcanic Line in Central Africa. Predicting phase-delay times affected by diffraction from this heterogeneity for each station gives phase velocities as they would be determined using the classical two-station method as well as the advanced array-beamforming method. Synthetics from these two methods are thus compared with measurements. We show how the dynamic phase velocity differs from the structural phase velocity, how these differences evolve in space and how two-station and array measurements are affected. In principle, arrays are affected with the same uncertainty as the two-station measurements. The dynamic effects can be several times larger than the error caused by the unknown arrival angle in case of the two-station method. The non-planarity of the waves and its relation to the arrival angle and dynamic phase-velocity deviations is discussed. Our study is complemented by extensive review of literature related to the surface wave phase-velocity measurement of the last 120 years.



2020 ◽  
Vol 10 (15) ◽  
pp. 5216
Author(s):  
Anh Hong Nguyen ◽  
Michael Rath ◽  
Erik Leitinger ◽  
Khang Van Nguyen ◽  
Klaus Witrisal

The consideration of ultra-wideband (UWB) and mm-wave signals allows for a channel description decomposed into specular multipath components (SMCs) and dense/diffuse multipath. In this paper, the amplitude and phase of SMCs are studied. Gaussian Process regression (GPR) is used as a tool to analyze and predict the SMC amplitudes and phases based on a measured training data set. In this regard, the dependency of the amplitude (and phase) on the angle-of-arrival/angle-of-departure of a multipath component is analyzed, which accounts for the incident angle and incident position of the signal at a reflecting surface—and thus for the reflection characteristics of the building material—and for the antenna gain patterns. The GPR model describes the similarities between different data points. Based on its model parameters and the training data, the amplitudes of SMCs are predicted at receiver positions that have not been measured in the experiment. The method can be used to predict a UWB channel impulse response at an arbitrary position in the environment.



Sign in / Sign up

Export Citation Format

Share Document