Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S23-S34 ◽  
Author(s):  
Jin-Hai Zhang ◽  
Wei-Min Wang ◽  
Shu-Qin Wang ◽  
Zhen-Xing Yao

A wide-angle propagator is essential when imaging complex media with strong lateral velocity contrasts in one-way wave-equation migration. We have developed a dual-domain one-way propagator using truncated Chebyshev polynomials and a globally optimized scheme. Our method increases the accuracy of the expanded square-root operator by adding two high-order terms to the traditional split-step Fourier propagator. First, we approximate the square-root operator using Taylor expansion around the reference background velocity. Then, we apply the first-kind Chebyshev polynomials to economize the results of the Taylor expansion. Finally, we optimize the constant coefficients using the globally optimized scheme, which are fixed and feasible for arbitrary velocity models. Theoretical analysis and nu-merical experiments have demonstrated that the method has veryhigh accuracy and exceeds the unoptimized Fourier finite-difference propagator for the entire range of practical velocity contrasts. The accurate propagation angle of the method is always about 60° under the relative error of 1% for complex media with weak, moderate, and even strong lateral velocity contrasts. The method allows us to handle wide-angle propagations and strong lateral velocity contrast simultaneously by using Fourier transform alone. Only four 2D Fourier transforms are required for each step of 3D wavefield extrapolation, and the computing cost is similar to that of the Fourier finite-difference method. Compared with the finite-difference method, our method has no two-way splitting error (i.e., azimuthal-anisotropy error) for 3D cases and almost no numerical dispersion for coarse grids. In addition, it has strong potential to be accelerated when an enhanced fast Fourier transform algorithm emerges.

2010 ◽  
Vol 27 (1) ◽  
pp. 014201
Author(s):  
Cheng Hua ◽  
Zang Wei-Ping ◽  
Zhao Zi-Yu ◽  
Li Zu-Bin ◽  
Zhou Wen-Yuan ◽  
...  

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 554-567 ◽  
Author(s):  
Dietrich Ristow ◽  
Thomas Rühl

We show that 3-D implicit finite‐difference schemes can be realized by multiway splitting in such a way that the steep dip problem and the problem of numerical anisotropy are overcome. The basic idea is as follows. We approximate the 3-D square root operator by a sequence of 2-D operators in three, four, or six directions to solve the azimuth symmetry problem. Each 2-D square root operator is then approximated by a sequence of implicit 2-D operators to improve steep dip accuracy. This sequence contains some unknown coefficients, which are calculated by a Taylor expansion technique or by an optimization technique. In the Taylor expansion method, the square root and its approximation are expanded into power series. By comparing the terms, the unknown coefficients are calculated. The more 2-D finite‐difference operators for cascading are taken and the more directions for downward continuation are chosen, the more terms from power series can be compared to obtain a higher‐degree migration operator with better circular symmetry. In the second method, optimized coefficients are calculated by an optimization procedure whereby a variation of all unknown coefficients is performed, in such a way that both the sum of all deviations between the correct square root and its approximation and the sum of all deviations from azimuth symmetry are minimized. A mathematical criterion for azimuth symmetry has been defined and incorporated into the opfimization procedure.


2021 ◽  
Author(s):  
Samaneh Zabihi ◽  
reza ezzati ◽  
F Fattahzadeh ◽  
J Rashidinia

Abstract A numerical framework based on fuzzy finite difference is presented for approximating fuzzy triangular solutions of fuzzy partial differential equations by considering the type of $[gH-p]-$differentiability. The fuzzy triangle functions are expanded using full fuzzy Taylor expansion to develop a new fuzzy finite difference method. By considering the type of gH-differentiability, we approximate the fuzzy derivatives with a new fuzzy finite-difference. In particular, we propose using this method to solve non-homogeneous fuzzy heat equation with triangular initial-boundary conditions. We examine the truncation error and the convergence conditions of the proposed method. Several numerical examples are presented to demonstrate the performance of the methods. The final results demonstrate the efficiency and the ability of the new fuzzy finite difference method to produce triangular fuzzy numerical results which are more consistent with existing reality.


Geophysics ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 23-48 ◽  
Author(s):  
R. H. Stolt

Wave equation migration is known to be simpler in principle when the horizontal coordinate or coordinates are replaced by their Fourier conjugates. Two practical migration schemes utilizing this concept are developed in this paper. One scheme extends the Claerbout finite difference method, greatly reducing dispersion problems usually associated with this method at higher dips and frequencies. The second scheme effects a Fourier transform in both space and time; by using the full scalar wave equation in the conjugate space, the method eliminates (up to the aliasing frequency) dispersion altogether. The second method in particular appears adaptable to three‐dimensional migration and migration before stack.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. S165-S175 ◽  
Author(s):  
Jin-Hai Zhang ◽  
Zhen-Xing Yao

The Fourier finite-difference (FFD) method is very popular in seismic depth migration. But its straightforward 3D extension creates two-way splitting error due to ignoring the cross terms of spatial partial derivatives. Traditional correction schemes, either in the spatial domain by the implicit finite-difference method or in the wavenumber domain by phase compensation, lead to substantially increased computational costs or numerical difficulties for strong velocity contrasts. We propose compensating the two-way splitting error in dual domains, alternately in the spatial and wavenumber domains via Fourier transform. First, we organize the expanded square-root operator in terms of two-way splitting FFD plus the usually ignored cross terms. Second, we select a group of optimized coefficients to maximize the accuracy of propagation in both inline and crossline directions without yet considering the diagonal directions. Finally, we further optimize the constant coefficient of the compensation part to further improve the overall accuracy of the operator. In implementation, the compensation terms are similar to the high-order corrections of the generalized-screen method, but their functions are to compensate the two-way splitting error rather than the expansion error. Numerical experiments show that optimized one-term compensation can achieve nearly perfect circular impulse responses and the propagation angle with less than 1% error for all azimuths is improved up to 60° from 35°. Compared with traditional single-domain methods, our scheme can handle lateral velocity variations (even for strong velocity contrasts) much more easily with only one additional Fourier transform based on the two-way splitting FFD method, which helps retain the computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document