Surface‐related multiple attenuation by prediction‐muting parabolic Radon transform

Author(s):  
Weihong Wang ◽  
Shumin Chen ◽  
Jianmin Wang
2016 ◽  
Vol 12 (3) ◽  
pp. 145
Author(s):  
Subarsyah Subarsyah ◽  
Tumpal Benhard Nainggolan

Interferensi water-bottom multipel terhadap reflektor primer menimbulkan efek bersifat destruktif yang menyebabkan penampang seismik menjadi tidak tepat akibat kehadiran reflektor semu. Teknik demultiple perlu diaplikasikan untuk mengatenuasi multipel. Transformasi parabolic radon merupakan teknik atenuasi multipel dengan metode pemisahan dalam domain radon. Multipel sering teridentifikasi pada penampang seismik. Untuk memperbaiki penampang seismik akan dilakukan dengan metode transformasi parabolic radon. Penerapan metode ini mengakibatkan reflektor multipel melemah dan tereduksi setelah dilakukan muting dalam domain radon terhadap zona multipel. Beberapa reflektor primer juga ikut melemah akibat pemisahan dalam domain radon yang kurang optimal, pemisahan akan optimal membutuhkan distribusi offset yang lebar. Kata kunci: Parabolic radon, multipel, atenuasi Water-bottom mutiple interference often destructively interfere with primary reflection that led to incorrect seismic section due to presence apparent reflector. Demultiple techniques need to be applied to attenuate the multiple. Parabolic Radon transform is demultiple attenuation technique that separate multiple and primary in radon domain. Water-bottom mutiple ussualy appear and easly identified on seismic data, parabolic radon transform applied to improve the seismic section. Application of this method to data showing multiple reflectors weakened and reduced after muting multiple zones in the radon domain. Some of the primary reflector also weakened due to bad separation in radon domain, optimal separation will require a wide distribution of offsets. Keywords: Parabolic radon, multiple, attenuation


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V317-V328
Author(s):  
Jitao Ma ◽  
Guoyang Xu ◽  
Xiaohong Chen ◽  
Xiaoliu Wang ◽  
Zhenjiang Hao

The parabolic Radon transform is one of the most commonly used multiple attenuation methods in seismic data processing. The 2D Radon transform cannot consider the azimuth effect on seismic data when processing 3D common-depth point gathers; hence, the result of applying this transform is unreliable. Therefore, the 3D Radon transform should be applied. The theory of the 3D Radon transform is first introduced. To address sparse sampling in the crossline direction, a lower frequency constraint is introduced to reduce spatial aliasing and improve the resolution of the Radon transform. An orthogonal polynomial transform, which can fit the amplitude variations in different parabolic directions, is combined with the dealiased 3D high-resolution Radon transform to account for the amplitude variations with offset of seismic data. A multiple model can be estimated with superior accuracy, and improved results can be achieved. Synthetic and real data examples indicate that even though our method comes at a higher computational cost than existing techniques, the developed approach provides better attenuation of multiples for 3D seismic data with amplitude variations.


Geophysics ◽  
1999 ◽  
Vol 64 (6) ◽  
pp. 1806-1815 ◽  
Author(s):  
Evgeny Landa ◽  
Igor Belfer ◽  
Shemer Keydar

The problem of multiple attenuation has been solved only partially. One of the most common methods of attenuating multiples is an approach based on the Radon transform. It is commonly accepted that the parabolic Radon transform method is only able to attenuate multiples with significant moveouts. We propose a new 2-D method for attenuation of both surface‐related and interbed multiples in the parabolic τ-p domain. The method is based on the prediction of a multiple model from the wavefront characteristics of the primary events. Multiple prediction comprises the following steps: 1) For a given multiple code, the angles of emergence and the radii of wavefront curvatures are estimated for primary reflections for each receiver in the common‐shotpoint gather. 2) The intermediate points which compose a specified multiple event are determined for each shot‐receiver pair. 3) Traveltimes of the multiples are calculated. Wavefields within time windows around the predicted traveltime curves may be considered as multiple model traces which we use for multiple attenuation process. Using the predicted multiple traveltimes, we can define the area in the τ-p domain which contains the main energy of the multiple event. Resolution improvement of the parabolic Radon operator can be achieved through a simple multiplication of each sample in the τ-p space by a nonlinear semblance function. In this work, we follow the idea of defining the multiple reject areas automatically by comparing the energy of the multiple model and the original input data in the τ-p space. We illustrate the usefulness of this algorithm for the attenuation of multiples on both synthetic and real data.


2019 ◽  
Vol 16 (4) ◽  
pp. 473-482
Author(s):  
Wen-Zhi Sun ◽  
Zhen-Chun Li ◽  
Ying-Ming Qu ◽  
Zhi-Na Li

Sign in / Sign up

Export Citation Format

Share Document