frequency constraint
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 11 (22) ◽  
pp. 10831
Author(s):  
Jincheng Guo ◽  
Huaping Tang

This paper presents a stiffness-oriented structure topology optimization (TO) method for the design of a continuous, hinge-free compliant mechanism (CM). A synthesis formulation is developed to maximize the mechanism’s mutual potential energy (MPE) to achieve required structure flexibility while maximizing the desired stiffness to withstand the loads. Different from the general approach of maximizing the overall stiffness of the structure, the proposed approach can contribute to guiding the optimization process focus on the desired stiffness in a specified direction by weighting the related eigen-frequency of the corresponding eigenmode. The benefit from this is that we can make full use of the material in micro-level compliant mechanism designs. The single-node connected hinge issue which often happened in optimized design can be precluded by introducing the eigen-frequency constraint into this synthesis formulation. Several obtained hinge-free designs illustrate the validity and robustness of the presented method and offer an alternative method for hinge-free compliant mechanism designs.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-20
Author(s):  
Jimmy Ming-Tai Wu ◽  
Qian Teng ◽  
Gautam Srivastava ◽  
Matin Pirouz ◽  
Jerry Chun-Wei Lin

In the ever-growing world, the concepts of High-utility Itemset Mining (HUIM) as well as Frequent Itemset Mining (FIM) are fundamental works in knowledge discovery. Several algorithms have been designed successfully. However, these algorithms only used one factor to estimate an itemset. In the past, skyline pattern mining by considering both aspects of frequency and utility has been extensively discussed. In most cases, however, people tend to focus on purchase quantities of itemsets rather than frequencies. In this article, we propose a new knowledge called skyline quantity-utility pattern (SQUP) to provide better estimations in the decision-making process by considering quantity and utility together. Two algorithms, respectively, called SQU-Miner and SKYQUP are presented to efficiently mine the set of SQUPs. Moreover, the usage of volunteer computing is proposed to show the potential in real supermarket applications. Two new efficient utility-max structures are also mentioned for the reduction of the candidate itemsets, respectively, utilized in SQU-Miner and SKYQUP. These two new utility-max structures are used to store the upper-bound of utility for itemsets under the quantity constraint instead of frequency constraint, and the second proposed utility-max structure moreover applies a recursive updated process to further obtain strict upper-bound of utility. Our in-depth experimental results prove that SKYQUP has stronger performance when a comparison is made to SQU-Miner in terms of memory usage, runtime, and the number of candidates.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1100
Author(s):  
Ming Zhang ◽  
Xiaojian Wang ◽  
Anxue Zhang

Broadband adaptive beamformers have been widely used in many areas due to their ability of filtering signals in space domain as well as in frequency domain. However, the space-time array employed in broadband beamformers requires presteering delays to align the signals coming from a specific direction. Because the presteering delays are direction dependent, it is difficult to make precise delays in practice. A common way to eliminate the presteering delays is imposing constraints on the weight vector of the space-time array. However, the structure of the constraint matrix is not taken into account in the existing methods, leading to a computational complexity of O(N2) when updating the weight vector. In this paper, we describe a new kind of constraint method in time domain that preserves the block diagonal structure of the constraint matrix. Based on this structure, we design an efficient weight vector update algorithm that has a computational complexity of O(N). In addition, the proposed algorithm does not contain matrix operations (only scalar and vector operations are involved), making it easy to be implemented in chips such as FPGA. Moreover, the constraint accuracy of the proposed method is as high as the frequency constraint method when the fractional bandwidth of the signal is smaller than 10%. Numerical experiments show that our method achieves the same performance of the state-of-the-art methods while keeping a simpler algorithm structure and a lower computational cost.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Xiaofei Chen ◽  
Xiaochun Lu ◽  
Xue Wang ◽  
Jing Ke ◽  
Xia Guo

With the development of global navigation satellite systems (GNSS), multiple signals modulated on different sub-carriers are needed to provide various services and to ensure compatibility with previous signals. As an effective method to provide diversified signals without introducing the nonlinear distortion of High Power Amplifier (HPA), the multi-carrier constant envelope multiplexing is widely used in satellite navigation systems. However, the previous method does not consider the influence of sub-carrier frequency constraint on the multiplexing signal, which may lead to signal power leakage. By determining the signal states probability according to the sub-carrier frequency constraint and solving the orthogonal bases according to the homogeneous equations, this article proposed multi-carrier constant envelope multiplexing methods based on probability and homogeneous equations. The analysis results show that the methods can multiplex multi-carrier signals without power leakage, thereby reducing the impact on signal ranging performance. Meanwhile, the methods could reduce the computation complexity. In the case of three different carriers multiplexing, the number of optimization equations is reduced by nearly 66%.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 477
Author(s):  
Warsha Balani ◽  
Mrinal Sarvagya ◽  
Ajit Samasgikar ◽  
Tanweer Ali ◽  
Pradeep Kumar

In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.


2020 ◽  
Vol 128 (23) ◽  
pp. 233102
Author(s):  
Akib Karim ◽  
Igor Lyskov ◽  
Salvy P. Russo ◽  
Alberto Peruzzo

Sign in / Sign up

Export Citation Format

Share Document