Joint inversion of transmitter navigation and seafloor resistivity for frequency-domain marine CSEM data

2015 ◽  
Author(s):  
Gang Li ◽  
Yuguo Li
Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. U9-U22 ◽  
Author(s):  
Jide Nosakare Ogunbo ◽  
Guy Marquis ◽  
Jie Zhang ◽  
Weizhong Wang

Geophysical joint inversion requires the setting of a few parameters for optimum performance of the process. However, there are yet no known detailed procedures for selecting the various parameters for performing the joint inversion. Previous works on the joint inversion of electromagnetic (EM) and seismic data have reported parameter applications for data sets acquired from the same dimensional geometry (either in two dimensions or three dimensions) and few on variant geometry. But none has discussed the parameter selections for the joint inversion of methods from variant geometry (for example, a 2D seismic travel and pseudo-2D frequency-domain EM data). With the advantage of affordable computational cost and the sufficient approximation of a 1D EM model in a horizontally layered sedimentary environment, we are able to set optimum joint inversion parameters to perform structurally constrained joint 2D seismic traveltime and pseudo-2D EM data for hydrocarbon exploration. From the synthetic experiments, even in the presence of noise, we are able to prescribe the rules for optimum parameter setting for the joint inversion, including the choice of initial model and the cross-gradient weighting. We apply these rules on field data to reconstruct a more reliable subsurface velocity model than the one obtained by the traveltime inversions alone. We expect that this approach will be useful for performing joint inversion of the seismic traveltime and frequency-domain EM data for the production of hydrocarbon.


2020 ◽  
Author(s):  
Pankaj K. Mishra ◽  
Adrien Arnulf ◽  
Mrinal K. Sen ◽  
Bertrand Denel ◽  
Yen Sun ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R447-R459 ◽  
Author(s):  
Chao Song ◽  
Tariq Alkhalifah ◽  
Yuanyuan Li

Full-waveform inversion (FWI) has become a popular method to retrieve high-resolution subsurface model parameters. It is a highly nonlinear optimization problem based on minimizing the misfit between the observed and predicted data. For intrinsically attenuating media, wave propagation experiences significant loss of energy. Thus, for better data fitting, it is sometimes crucial to consider attenuation in FWI. Viscoacoustic FWI aims at achieving a joint inversion of the velocity and attenuation models. However, multiparameter FWI imposes additional challenges including expanding the null space and facing parameter trade-off issues. Theoretically, an ideal way to mitigate the trade-off issue in multiparameter FWI is to apply the inverse Hessian operator to the parameter gradients. However, it is often not practical to calculate the full Hessian and its matrix inverse because this will be extremely expensive. To improve the computational efficiency and mitigate the trade-off issue, we have used an efficient wavefield inversion (EWI) method to invert for the velocity and the intrinsic attenuation. This approach is implemented in the frequency domain, and the velocity, in this case, is complex-valued in the viscoacoustic EWI. We evaluate a sequential update strategy for the velocity and the intrinsic attenuation, and we repeat the separate optimizations, which we refer to as outer iterations, until the convergence is achieved. Because viscoacoustic EWI is able to recover an accurate velocity model, the velocity update leakage to the [Formula: see text] model is largely reduced. We determine the effectiveness of this approach using synthetic data generated for the viscoacoustic Marmousi and Overthrust models. To further demonstrate the validity of our approach, we generate data in the time domain using a viscoelastic wave equation solver and obtain reasonable inversion results in the frequency domain using the viscoacoustic approximation.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. H41-H56 ◽  
Author(s):  
Xuan Feng ◽  
Qianci Ren ◽  
Cai Liu ◽  
Xuebing Zhang

Integrating crosshole ground-penetrating radar (GPR) with seismic methods is an efficient way to reduce the uncertainty and ambiguity of data interpretation in shallow geophysical investigations. We have developed a new approach for joint full-waveform inversion (FWI) of crosshole seismic and GPR data in the frequency domain to improve the inversion results of both FWI methods. In a joint objective function, three geophysical parameters (P-wave velocity, permittivity, and conductivity) are effectively connected by three weighted cross-gradient terms that enforce the structural similarity between parameter models. Simulation of acoustic seismic and scalar electromagnetic problems is implemented using 2D finite-difference frequency-domain methods, and the inverse problems of seismic FWI and GPR FWI are solved using a matrix-free truncated Newton algorithm. The joint inversion procedure is performed in several hierarchical frequencies, and the three parameter models are sequentially inverted at each frequency. The joint FWI approach is illustrated using three numerical examples. The results indicate that the joint FWI approach can effectively enhance the structural similarity among the models, modify the structure of each model, and improve the accuracy of inversion results compared with those of individual FWI approaches. Moreover, joint inversion can reduce the trade-off between permittivity and conductivity in GPR FWI, leading to an improved conductivity model in which artifacts are significantly decreased.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-4
Author(s):  
Federico Ceci ◽  
Massimo Clementi ◽  
Ivan Guerra ◽  
Marco Mantovani ◽  
Andrea Lovatini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document