Prefactored optimized compact finite-difference schemes for second spatial derivatives

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB87-WB95 ◽  
Author(s):  
Hongbo Zhou ◽  
Guanquan Zhang

We have described systematically the processes of developing prefactored optimized compact schemes for second spatial derivatives. First, instead of emphasizing high resolution of a single monochromatic wave, we focus on improving the representation of the compact finite difference schemes over a wide range of wavenumbers. This leads to the development of the optimized compact schemes whose coefficients will be determined by Fourier analysis and the least-squares optimization in the wavenumber domain. The resulted optimized compact schemes provide the maximum resolution in spatial directions for the simulation of wave propagations. However, solving for each spatial derivative using these compact schemes requires the inversion of a band matrix. To resolve this issue, we propose a prefactorization strategy that decomposes the original optimized compact scheme into forward and backward biased schemes, which can be solved explicitly. We achieve this by ensuring a property that the real numerical wavenumbers of both the forward and backward biased stencils are the same as that of the original central compact scheme, and their imaginary numerical wavenumbers have the same values but with opposite signs. This property guarantees that the original optimized compact scheme can be completely recovered after the summation of the forward and backward finite difference operators. These prefactored optimized compact schemes have smaller stencil sizes than even those of the original compact schemes, and hence, they can take full advantage of the computer caches without sacrificing their resolving power. Comparisons were made throughout with other well-known schemes.

2003 ◽  
Vol 06 (07) ◽  
pp. 767-789 ◽  
Author(s):  
Bertram Düring ◽  
Michel Fournié ◽  
Ansgar Jüngel

A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. A new compact scheme, generalizing the compact schemes of Rigal [29], is derived and proved to be unconditionally stable and non-oscillatory. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more efficient than the considered classical schemes.


2019 ◽  
Vol 47 (1) ◽  
pp. 32-37
Author(s):  
V.A. Gordin

Compact finite-difference schemes are well known and provide high accuracy order for differential equation with constant coefficients. Algorithms for constructing compact schemes of the 4-th order for boundary value problems with variable (smooth or jump) coefficient are developed. For the diffusion equations with a smooth variable coefficient and the Levin – Leontovich equation, compact finite-difference schemes are also constructed and their 4-th order is experimentally confirmed. The method of constructing compact schemes of the 4-th order can be generalized to partial differential equations and systems with weak nonlinearity, for example, for the Fisher – Kolmogorov – Petrovsky – Piskunov equation, for the nonlinear Schrödinger equation or for the Fitzhugh – Nagumo system. For such nonlinear problems, a combination of simple explicit schemes and relaxation is used. Richardson’s extrapolation increases the order of the circuits to the 6-th. To approximate multidimensional problems with discontinuous coefficients, for example, the two-dimensional stationary diffusion equation in inhomogeneous media, it is necessary to estimate the possible asymptotics of solutions in the vicinity of the boundary line’s breaks. To do this, we use generalized eigen-functions in the angle, which can be used as a set of test functions and build compact difference schemes approximating the problem on triangular grids with high order of accuracy. The asymptotics along the radius of these generalized eigen-functions (in polar coordinates in the vicinity of the vertex of the angle) have irrational indices which can be found from a special dispersion equation and which determine the indices of the corresponding Bessel functions along the radius. For a number of difference schemes approximating the most important evolutionary equations of mathematical physics, it is possible to construct special boundary conditions imitating the Cauchy problem (ICP) on the whole space. These conditions depend not only on the original equation, but also on the type of the difference scheme, and even on the coefficients of the corresponding differential equation. The ICP conditions are determined with accuracy to a gauge. But the choice of this gauge turns out to be essential with numerical implementation. The role of rational approximations of the Pade – Hermite type of the symbol of the corresponding pseudo-differential operator is important. Examples of movie solutions of problems with ICP conditions for various finite-difference schemes approximating the basic mathematical physics equations, see https://cs.hse.ru/mmsg/transbounds. The study was realized within the framework of the Academic Fund Program at the National Research University – Higher School of Economics (HSE) in 2016–2017 (grant No. 16-05-0069) and by the Russian Academic Excellence Project «5–100».


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Yaw Kyei ◽  
John Paul Roop ◽  
Guoqing Tang

We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson's equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear systems are solved in a high-performance computing environment. The resulting discretization is a one-parameter family of finite-difference schemes which may be further optimized for accuracy and stability. Computational experiments are implemented which illustrate the theoretically demonstrated truncation errors.


Sign in / Sign up

Export Citation Format

Share Document