Constrained least-squares spectral analysis: Application to seismic data

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. V143-V167 ◽  
Author(s):  
Charles I. Puryear ◽  
Oleg N. Portniaguine ◽  
Carlos M. Cobos ◽  
John P. Castagna

An inversion-based algorithm for computing the time-frequency analysis of reflection seismograms using constrained least-squares spectral analysis is formulated and applied to modeled seismic waveforms and real seismic data. The Fourier series coefficients are computed as a function of time directly by inverting a basis of truncated sinusoidal kernels for a moving time window. The method resulted in spectra that have reduced window smearing for a given window length relative to the discrete Fourier transform irrespective of window shape, and a time-frequency analysis with a combination of time and frequency resolution that is superior to the short time Fourier transform and the continuous wavelet transform. The reduction in spectral smoothing enables better determination of the spectral characteristics of interfering reflections within a short window. The degree of resolution improvement relative to the short time Fourier transform increases as window length decreases. As compared with the continuous wavelet transform, the method has greatly improved temporal resolution, particularly at low frequencies.

2007 ◽  
Vol 19 (05) ◽  
pp. 331-339
Author(s):  
S. M. Debbal ◽  
F. Bereksi-Reguig

This paper presents the analysis and comparisons of the short time Fourier transform (STFT) and the continuous wavelet transform techniques (CWT) to the four sounds analysis (S1, S2, S3 and S4). It is found that the spectrogram short-time Fourier transform (STFT), cannot perfectly detect the internals components of these sounds that the continuous wavelet transform. However, the short time Fourier transform can provide correctly the extent of time and frequency of these four sounds. Thus, the STFT and the CWT techniques provide more features and characteristics of the sounds that will hemp physicians to obtain qualitative and quantitative measurements of the time-frequency characteristics.


Author(s):  
Yovinia Carmeneja Hoar Siki ◽  
Natalia Magdalena Rafu Mamulak

Time-Frequency Analysis on Gong Timor Music has an important role in the application of signal-processing music such as tone tracking and music transcription or music signal notation. Some of Gong characters is heard by different ways of forcing Gong himself, such as how to play Gong based on the Player’s senses, a set of Gong, and by changing the tempo of Gong instruments. Gong's musical signals have more complex analytical criteria than Western music instrument analysis. This research uses a Gong instrument and two notations; frequency analysis of Gong music frequency compared by the Short-time Fourier Transform (STFT), Overlap Short-time Fourier Transform (OSTFT), and Continuous Wavelet Transform (CWT) method. In the STFT and OSTFT methods, time-frequency analysis Gong music is used with different windows and hop size while CWT method uses Morlet wavelet. The results show that the CWT is better than the STFT methods.


2006 ◽  
Vol 129 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Bao Liu ◽  
Sherman Riemenschneider ◽  
Zuowei Shen

This paper presents a fast adaptive time–frequency analysis method for dealing with the signals consisting of stationary components and transients, which are encountered very often in practice. It is developed based on the short-time Fourier transform but the window bandwidth varies along frequency adaptively. The method therefore behaves more like an adaptive continuous wavelet transform. We use B-splines as the window functions, which have near optimal time–frequency localization, and derive a fast algorithm for adaptive time–frequency representation. The method is applied to the analysis of vibration signals collected from rotating machines with incipient localized defects. The results show that it performs obviously better than the short-time Fourier transform, continuous wavelet transform, and several other most studied time–frequency analysis techniques for the given task.


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. P19-P25 ◽  
Author(s):  
Satish Sinha ◽  
Partha S. Routh ◽  
Phil D. Anno ◽  
John P. Castagna

This paper presents a new methodology for computing a time-frequency map for nonstationary signals using the continuous-wavelet transform (CWT). The conventional method of producing a time-frequency map using the short time Fourier transform (STFT) limits time-frequency resolution by a predefined window length. In contrast, the CWT method does not require preselecting a window length and does not have a fixed time-frequency resolution over the time-frequency space. CWT uses dilation and translation of a wavelet to produce a time-scale map. A single scale encompasses a frequency band and is inversely proportional to the time support of the dilated wavelet. Previous workers have converted a time-scale map into a time-frequency map by taking the center frequencies of each scale. We transform the time-scale map by taking the Fourier transform of the inverse CWT to produce a time-frequency map. Thus, a time-scale map is converted into a time-frequency map in which the amplitudes of individual frequencies rather than frequency bands are represented. We refer to such a map as the time-frequency CWT (TFCWT). We validate our approach with a nonstationary synthetic example and compare the results with the STFT and a typical CWT spectrum. Two field examples illustrate that the TFCWT potentially can be used to detect frequency shadows caused by hydrocarbons and to identify subtle stratigraphic features for reservoir characterization.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Meifal Rusli

<p class="TTPParagraphothers"><em>The paper discusses means to predict sound source position emitted by fault machine components based on a single microphone moving in a linear track with constant speed.</em> The position of sound source that consists of some frequency spectrum is detected by time-frequency distribution of the sound signal through Short Time Fourier Transform (STFT) and Continues Wavelet Transform (CWT). <em>As the amplitude of sound pressure increases when the microphone moves closer, the source position and frequency are predicted from the peaks of time-frequency contour map</em><em>. </em>Firstly, numerical simulation is conducted using two sound sources that generate four different frequencies of sound. The second case is experimental analysis using rotating machine being monitored with unbalanced, misalignment and bearing defect. The result shows that application of both STFT and CWT are able to detect multiple sound sources position with multiple frequency peaks caused by machine fault. The STFT can indicate the frequency very clearly, but not for the peak position. On the other hand, the CWT is able to predict the position of sound at low frequency very clearly. However, it is failed to detect the exact frequency because of overlapping.</p>


10.14311/1654 ◽  
2012 ◽  
Vol 52 (5) ◽  
Author(s):  
Václav Turoň

This paper deals with the new time-frequency Short-Time Approximated Discrete Zolotarev Transform (STADZT), which is based on symmetrical Zolotarev polynomials. Due to the special properties of these polynomials, STADZT can be used for spectral analysis of stationary and non-stationary signals with the better time and frequency resolution than the widely used Short-Time Fourier Transform (STFT). This paper describes the parameters of STADZT that have the main influence on its properties and behaviour. The selected parameters include the shape and length of the segmentation window, and the segmentation overlap. Because STADZT is very similar to STFT, the paper includes a comparison of the spectral analysis of a non-stationary signal created by STADZT and by STFT with various settings of the parameters.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1906-1916 ◽  
Author(s):  
Avijit Chakraborty ◽  
David Okaya

Spectral analysis is an important signal processing tool for seismic data. The transformation of a seismogram into the frequency domain is the basis for a significant number of processing algorithms and interpretive methods. However, for seismograms whose frequency content vary with time, a simple 1-D (Fourier) frequency transformation is not sufficient. Improved spectral decomposition in frequency‐time (FT) space is provided by the sliding window (short time) Fourier transform, although this method suffers from the time‐ frequency resolution limitation. Recently developed transforms based on the new mathematical field of wavelet analysis bypass this resolution limitation and offer superior spectral decomposition. The continuous wavelet transform with its scale‐translation plane is conceptually best understood when contrasted to a short time Fourier transform. The discrete wavelet transform and matching pursuit algorithm are alternative wavelet transforms that map a seismogram into FT space. Decomposition into FT space of synthetic and calibrated explosive‐source seismic data suggest that the matching pursuit algorithm provides excellent spectral localization, and reflections, direct and surface waves, and artifact energy are clearly identifiable. Wavelet‐based transformations offer new opportunities for improved processing algorithms and spectral interpretation methods.


1999 ◽  
Vol 42 (3) ◽  
Author(s):  
T. Bartosch ◽  
D. Seidl

Among a variety of spectrogram methods Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.


2002 ◽  
Vol 24 (1) ◽  
pp. 51-64
Author(s):  
Tran Duong Tri

This paper provides some results for analyzing relations between frequencies and time of vibration signals. These results have been obtained by studying the properties of wavelet transform, the spectral analysis, the Short-time Fourier transform and by using the toolboxes in the software parked MATLAB. We have created the corresponding PC programs in order to realize algorithms and for the illustration of results by exploring examples.


Sign in / Sign up

Export Citation Format

Share Document