scholarly journals Some results for analyzing time-dependent frequencies of vibration signals

2002 ◽  
Vol 24 (1) ◽  
pp. 51-64
Author(s):  
Tran Duong Tri

This paper provides some results for analyzing relations between frequencies and time of vibration signals. These results have been obtained by studying the properties of wavelet transform, the spectral analysis, the Short-time Fourier transform and by using the toolboxes in the software parked MATLAB. We have created the corresponding PC programs in order to realize algorithms and for the illustration of results by exploring examples.

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. V143-V167 ◽  
Author(s):  
Charles I. Puryear ◽  
Oleg N. Portniaguine ◽  
Carlos M. Cobos ◽  
John P. Castagna

An inversion-based algorithm for computing the time-frequency analysis of reflection seismograms using constrained least-squares spectral analysis is formulated and applied to modeled seismic waveforms and real seismic data. The Fourier series coefficients are computed as a function of time directly by inverting a basis of truncated sinusoidal kernels for a moving time window. The method resulted in spectra that have reduced window smearing for a given window length relative to the discrete Fourier transform irrespective of window shape, and a time-frequency analysis with a combination of time and frequency resolution that is superior to the short time Fourier transform and the continuous wavelet transform. The reduction in spectral smoothing enables better determination of the spectral characteristics of interfering reflections within a short window. The degree of resolution improvement relative to the short time Fourier transform increases as window length decreases. As compared with the continuous wavelet transform, the method has greatly improved temporal resolution, particularly at low frequencies.


2014 ◽  
Vol 214 ◽  
pp. 48-57 ◽  
Author(s):  
Krzysztof Prażnowski ◽  
Sebastian Brol ◽  
Andrzej Augustynowicz

This paper presents a method of identification of non-homogeneity or static unbalance of the structure of a car wheel based on a simple road test. In particular a method the detection of single wheel unbalance is proposed which applies an acceleration sensor fixed on windscreen. It measures accelerations cause by wheel unbalance among other parameters. The location of the sensor is convenient for handling an autonomous device used for diagnostic purposes. Unfortunately, its mounting point is located away from wheels. Moreover, the unbalance forces created by wheels spin are dumped by suspension elements as well as the chassis itself. It indicates that unbalance acceleration will be weak in comparison to other signals coming from engine vibrations, road roughness and environmental effects. Therefore, the static unbalance detection in the standard way is considered problematic and difficult. The goal of the undertaken research is to select appropriate transformations and procedures in order to determine wheel unbalance in these conditions. In this investigation regular and short time Fourier transform were used as well as wavelet transform. It was found that the use of Fourier transforms is appropriate for static condition (constant velocity) but the results proves that the wavelet transform is more suitable for diagnostic purposes because of its ability of producing clearer output even if car is in the state of acceleration or deceleration. Moreover it was proved that in the acceleration spectrum of acceleration measured on the windscreen a significant peak can be found when car runs with an unbalanced wheel. Moreover its frequency depends on wheel rotational frequency. For that reason the diagnostic of single wheel unbalance can be made by applying this method.


2019 ◽  
Vol 9 (18) ◽  
pp. 3642
Author(s):  
Lin Liang ◽  
Haobin Wen ◽  
Fei Liu ◽  
Guang Li ◽  
Maolin Li

The incipient damages of mechanical equipment excite weak impulse vibration, which is hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass filtering and time-frequency analysis, are suitable for matrix processing but challenged by the higher-order data. To tackle these problems, a novel method of impulse feature extraction for vibration signals, based on sparse non-negative tensor factorization is presented in this paper. Primarily, the phase space reconstruction and the short time Fourier transform are successively employed to convert the original signal into time-frequency distributions, which are further arranged into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm, after which the latent components are reconstructed from the factors by the inverse short time Fourier transform and eventually help extract the impulse feature through envelope analysis. For performance verification, the experimental analysis on the bearing datasets and the swashplate piston pump has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods, including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum spectrum kurtosis, also suggest its better performance of feature extraction.


2013 ◽  
Vol 13 (6) ◽  
pp. 1679-1686 ◽  
Author(s):  
W. Astuti ◽  
W. Sediono ◽  
R. Akmeliawati ◽  
A. M. Aibinu ◽  
M. J. E. Salami

Abstract. An earthquake is one of the most destructive natural disasters that can occur, often killing many people and causing large material losses. Hence, the ability to predict earthquakes may reduce the catastrophic effects caused by this phenomenon. The geoelectric field is a feature that can be used to predict earthquakes (EQs) because of significant changes in the amplitude of the signal prior to an earthquake. This paper presents a detailed analysis of geoelectric field signals of earthquakes which occurred in 2008 in Greece. In 2008, 12 earthquakes occurred in Greece. Five of them were recorded with magnitudes greater than Ms = 5R (5R), while seven of them were recorded with magnitudes greater than Ms = 6R (6R). In the analysis, the 1st significant changes of the geoelectric field signal are detected. Then, the signal is segmented and windowed. The adaptive short-time Fourier transform (adaptive STFT) technique is then applied to the windowed signal, and the spectral analysis is performed thereafter. The results show that the 1st significant changes of the geoelectric field prior to an earthquake have a significant amplitude frequency spectrum compared to other conditions, i.e. normal days and the day of the earthquake, which can be used as input parameters for earthquake prediction.


1995 ◽  
Vol 2 (6) ◽  
pp. 437-444 ◽  
Author(s):  
Howard A. Gaberson

This article discusses time frequency analysis of machinery diagnostic vibration signals. The short time Fourier transform, the Wigner, and the Choi–Williams distributions are explained and illustrated with test cases. Examples of Choi—Williams analyses of machinery vibration signals are presented. The analyses detect discontinuities in the signals and their timing, amplitude and frequency modulation, and the presence of different components in a vibration signal.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Meifal Rusli

<p class="TTPParagraphothers"><em>The paper discusses means to predict sound source position emitted by fault machine components based on a single microphone moving in a linear track with constant speed.</em> The position of sound source that consists of some frequency spectrum is detected by time-frequency distribution of the sound signal through Short Time Fourier Transform (STFT) and Continues Wavelet Transform (CWT). <em>As the amplitude of sound pressure increases when the microphone moves closer, the source position and frequency are predicted from the peaks of time-frequency contour map</em><em>. </em>Firstly, numerical simulation is conducted using two sound sources that generate four different frequencies of sound. The second case is experimental analysis using rotating machine being monitored with unbalanced, misalignment and bearing defect. The result shows that application of both STFT and CWT are able to detect multiple sound sources position with multiple frequency peaks caused by machine fault. The STFT can indicate the frequency very clearly, but not for the peak position. On the other hand, the CWT is able to predict the position of sound at low frequency very clearly. However, it is failed to detect the exact frequency because of overlapping.</p>


10.14311/1654 ◽  
2012 ◽  
Vol 52 (5) ◽  
Author(s):  
Václav Turoň

This paper deals with the new time-frequency Short-Time Approximated Discrete Zolotarev Transform (STADZT), which is based on symmetrical Zolotarev polynomials. Due to the special properties of these polynomials, STADZT can be used for spectral analysis of stationary and non-stationary signals with the better time and frequency resolution than the widely used Short-Time Fourier Transform (STFT). This paper describes the parameters of STADZT that have the main influence on its properties and behaviour. The selected parameters include the shape and length of the segmentation window, and the segmentation overlap. Because STADZT is very similar to STFT, the paper includes a comparison of the spectral analysis of a non-stationary signal created by STADZT and by STFT with various settings of the parameters.


2007 ◽  
Vol 19 (05) ◽  
pp. 331-339
Author(s):  
S. M. Debbal ◽  
F. Bereksi-Reguig

This paper presents the analysis and comparisons of the short time Fourier transform (STFT) and the continuous wavelet transform techniques (CWT) to the four sounds analysis (S1, S2, S3 and S4). It is found that the spectrogram short-time Fourier transform (STFT), cannot perfectly detect the internals components of these sounds that the continuous wavelet transform. However, the short time Fourier transform can provide correctly the extent of time and frequency of these four sounds. Thus, the STFT and the CWT techniques provide more features and characteristics of the sounds that will hemp physicians to obtain qualitative and quantitative measurements of the time-frequency characteristics.


Sign in / Sign up

Export Citation Format

Share Document