Gas hydrate and free gas petroleum system in 3D seismic data, offshore Angola

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. O55-O63 ◽  
Author(s):  
Martin Nyamapfumba ◽  
George A. McMechan

Evidence of gas hydrate and free gas occurrences in a 3D seismic volume from the West-Central Coastal Province of the Congo Fan, offshore Angola, illustrates all the components of a complete petroleum system. Analysis and interpretation are based on the information in attributes calculated from three 3D time-migrated common-angle seismic volumes; the attributes include seismic amplitude, spectral components, dip magnitude, amplitude variation with angle, and instantaneous frequency. The source is organic-rich muds associated with late Cretaceous to early Tertiary channels, the migration paths are along growth faults, and the traps are partly defined by the gas hydrate stability zone (for the gas hydrate), partly by the bottom-simulating reflector (for the subhydrate free gas), and partly by faults (for both). The spatial distribution of free gas is further supported by the associated seismic bright spots, and also by the attenuation of high frequencies of P-waves that traverse the gas-saturated zone. Locally higher temperatures, associated with upward fluid circulation along fault zones, facilitate gas transmission through the gas hydrate and forms gas chimneys that extend to the sea floor.

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B183-B191 ◽  
Author(s):  
M. Riedel ◽  
G. Bellefleur ◽  
S. R. Dallimore ◽  
A. Taylor ◽  
J. F. Wright

Amplitude and frequency anomalies associated with lakes and drainage systems were observed in a 3D seismic data set acquired in the Mallik area, Mackenzie Delta, Northwest Territories, Canada. The site is characterized by large gas hydrate deposits inferred from well-log analyses and coring. Regional interpretation of the gas hydrate occurrences is mainly based on seismic amplitude anomalies, such as brightening or blanking of seismic energy. Thus, the scope of this research is to understand the nature of the amplitude behavior in the seismic data. We have therefore analyzed the 3D seismic data to define areas with amplitude reduction due to contamination from lakes and channels and to distinguish them from areas where amplitude blanking may be a geologic signal. We have used the spectral ratio method to define attenuation (Q) over different areas in the 3D volume and subsequently applied Q-compensation to attenuate lateral variations ofdispersive absorption. Underneath larger lakes, seismic amplitude is reduced and the frequency content is reduced to [Formula: see text], which is half the original bandwidth. Traces with source-receiver pairs located inside of lakes show an attenuation factor Q of [Formula: see text], approximately half of that obtained for source-receiver pairs situated on deep, continuous permafrost outside of lakes. Deeper reflections occasionally identified underneath lakes show low-velocity-related pull-down. The vertical extent of the washout zones is enhanced by acquisition with limited offsets and from processing parameters such as harsh mute functions to reduce noise from surface waves. The strong attenuation and seismic pull-down may indicate the presence of unfrozen water in deeper lakes and unfrozen pore water within the sediments underlying the lakes. Thus, the blanking underneath lakes is not necessarily related to gas migration or other in situ changes in physical properties potentially associated with the presence of gas hydrate.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. C1-C6 ◽  
Author(s):  
Maheswar Ojha ◽  
Kalachand Sain ◽  
Timothy A. Minshull

We estimate the saturations of gas hydrate and free gas based on measurements of seismic-reflection amplitude variation with offset (AVO) for a bottom-simulating reflector coupled with rock-physics modeling. When we apply the approach to data from a seismic line in the Makran accretionary prism in the Arabian Sea, the results reveal lateral variations of gas-hydrate and free-gas saturations of 4–29% and 1–7.5%, respectively, depending on the rock-physics model used to relate seismic velocity to saturation. Our approach is simple and easy to implement.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 582-593 ◽  
Author(s):  
Shaoming Lu ◽  
George A. McMechan

Gas hydrates contain a major untapped source of energy and are of potential economic importance. The theoretical models to estimate gas hydrate saturation from seismic data predict significantly different acoustic/elastic properties of sediments containing gas hydrate; we do not know which to use. Thus, we develop a new approach based on empirical relations. The water‐filled porosity is calibrated (using well‐log data) to acoustic impedance twice: one calibration where gas hydrate is present and the other where free gas is present. The water‐filled porosity is used in a combination of Archie equations (with corresponding parameters for either gas hydrate or free gas) to estimate gas hydrate or free gas saturations. The method is applied to single‐channel seismic data and well logs from Ocean Drilling Program leg 164 from the Blake Ridge area off the east coast of North America. The gas hydrate above the bottom simulating reflector (BSR) is estimated to occupy ∼3–8% of the pore space (∼2–6% by volume). Free gas is interpreted to be present in three main layers beneath the BSR, with average gas saturations of 11–14%, 7–11%, and 1–5% of the pore space (6–8%, 4–6%, and 1–3% by volume), respectively. The estimated saturations of gas hydrate are very similar to those estimated from vertical seismic profile data and generally agree with those from independent, indirect estimates obtained from resistivity and chloride measurements. The estimated free gas saturations agree with measurements from a pressure core sampler. These results suggest that locally derived empirical relations between porosity and acoustic impedance can provide cost‐effective estimates of the saturation, concentration, and distribution of gas hydrate and free gas away from control wells.


2020 ◽  
Author(s):  
David Cox ◽  
Andrew M. W. Newton ◽  
Paul C. Knutz ◽  
Mads Huuse

<p>A drilling hazard assessment has been completed for a large area of the NW Greenland-Baffin Bay continental shelf. This assessment was in relation to International Ocean Discovery Program (IODP) proposal 909 that aims to drill several sites across the shelf in an attempt to better understand the evolution and variability of the northern Greenland Ice Sheet. The assessment utilised high quality and extensive 3D seismic data that were acquired during recent hydrocarbon exploration interest in the area – a fact that highlights the risk of drilling in a petroleum province and therefore, the importance of this assessment with regards to safety.</p><p>Scattered seismic anomalies are observed within the Cenozoic sedimentary succession covering the rift basins of the Melville Bay region. These features, potentially representing the presence of free gas or gas-rich fluids, vary in nature from isolated anomalies, fault flags, stacked fluid flow features and canyons; all of which pose a significant drilling risk and were actively avoided during site selection. In areas above the Melville Bay Ridge – a feature that dominates the structure of this area – free gas is also observed trapped beneath extensive gas hydrate deposits, identified via a spectacularly imaged bottom simulating reflector marking the base of the gas hydrate stability zone. The location of the hydrate deposits, and the free gas beneath, are likely controlled by a complicated migration history, due to large scale rift-related faulting and migration along sandy aquifer horizons. In other areas, gas is interpreted to have reached the shallow subsurface due to secondary leakage from a deeper gas reservoir on the ridge crest.</p><p>It is clear that hydrocarbon related hazards within this area are varied and abundant, making it a more challenging location to select sites for an IODP drilling campaign. However, due to the extensive coverage and high resolution (up to 11 m vertical resolution (45 Hz at 2.0 km/s velocity) of the 3D seismic data available, as well as the use of recently acquired ultra-high resolution site survey lines, these features can be accurately imaged and confidently mapped. This allowed for the development of a detailed understanding of the character and distribution of fluids within the shallow subsurface, and the use of this knowledge to select site localities that maximise the potential for drilling to be completed safely and successfully if proposal 909 were to be executed.</p>


2021 ◽  
pp. 1-45
Author(s):  
JInqiang Liang ◽  
Zijian Zhang ◽  
Jingan Lu ◽  
Guo Yiqun ◽  
Zhibin Sha ◽  
...  

Bottom-simulating reflections (BSR) in seismic data have been widely accepted to indicate the base of methane gas hydrate stability zone (MGHSZ) and free gas was thought to exist only below it. However, real geologic systems are far more complex. Here, we presented the results of three-dimensional seismic, logging while drilling (LWD), in situ and coring measurements at a venting gas hydrate system in the Shenhu area of the South China Sea. Our studies reveal that free gas has migrated upward through the thermogenic gas hydrate stability zone (TGHSZ) into the MGHSZ and become a part of the gas hydrate system. Seismic amplitude anomalies and core results suggest the presence of free gas above the base of MHSZ at 165 mbsf and the presence of thermogenic gas hydrates below it in the well SC-W01. Analyses of P-wave velocity, S-wave velocity, density, and porosity logs reveal free gas occurs above and below the MGHSZ as well. Integrating log and core analysis with seismic interpretation suggests that the variation in seismic amplitude within chaotic zone is associated with variable gas saturations, and a large amount of methane and thermogenic gases accumulate near the complex BSRs. We propose that relative permeability likely plays a significant role in the free gas distribution and formation of gas hydrates within a venting gas hydrate system, while the effect of dissolved-gas short migration is not ignored. Our results have important implications for understanding the accumulation and distribution of gas hydrates and free gas in the venting gas hydrate system and seeps at the seafloor.


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 54-67 ◽  
Author(s):  
José M. Carcione ◽  
Umberta Tinivella

We obtain the wave velocities of ice‐ and gas hydrate‐bearing sediments as a function of concentration and temperature. Unlike previous theories based on simple slowness and/or moduli averaging or two‐phase models, we use a Biot‐type three‐phase theory that considers the existence of two solids (grain and ice or clathrate) and a liquid (water), and a porous matrix containing gas and water. For consolidated Berea sandstone, the theory underestimates the value of the compressional velocity below 0°C. Including grain‐ice interactions and grain cementation yields a good fit to the experimental data. Strictly speaking, water proportion and temperature are closely related. Fitting the wave velocity at a given temperature allows the prediction of the velocity throughout the range of temperatures, provided that the average pore radius and its standard deviation are known. The reflection coefficients are computed with a viscoelastic single‐phase constitutive model. The analysis is carried out for the top and bottom of a free‐gas zone beneath a gas hydrate‐bearing sediment and overlying a sediment fully saturated with water. Assuming that the bottom‐simulating reflector is caused solely by an interface separating cemented gas hydrate‐ and free gas‐bearing sediments, we conclude that (1) for a given gas saturation, it is difficult to evaluate the amount of gas hydrate at low concentrations. However, low and high concentrations of hydrate can be distinguished, since they give positive and negative anomalies, respectively. (2) Saturation of free gas can be determined from the reflection amplitude, but not from the type of anomaly. (3) The P to S reflection coefficient is a good indicator of high amounts of free gas and gas hydrate. On the other hand, the amplitude‐variation‐with‐offset curves are always positive for uncemented sediments.


2016 ◽  
Vol 4 (1) ◽  
pp. SA39-SA54 ◽  
Author(s):  
Sunny Singhroha ◽  
Stefan Bünz ◽  
Andreia Plaza-Faverola ◽  
Shyam Chand

We have estimated the seismic attenuation in gas hydrate and free-gas-bearing sediments from high-resolution P-cable 3D seismic data from the Vestnesa Ridge on the Arctic continental margin of Svalbard. P-cable data have a broad bandwidth (20–300 Hz), which is extremely advantageous in estimating seismic attenuation in a medium. The seismic quality factor (Q), the inverse of seismic attenuation, is estimated from the seismic data set using the centroid frequency shift and spectral ratio (SR) methods. The centroid frequency shift method establishes a relationship between the change in the centroid frequency of an amplitude spectrum and the Q value of a medium. The SR method estimates the Q value of a medium by studying the differential decay of different frequencies. The broad bandwidth and short offset characteristics of the P-cable data set are useful to continuously map the Q for different layers throughout the 3D seismic volume. The centroid frequency shift method is found to be relatively more stable than the SR method. Q values estimated using these two methods are in concordance with each other. The Q data document attenuation anomalies in the layers in the gas hydrate stability zone above the bottom-simulating reflection (BSR) and in the free gas zone below. Changes in the attenuation anomalies correlate with small-scale fault systems in the Vestnesa Ridge suggesting a strong structural control on the distribution of free gas and gas hydrates in the region. We argued that high and spatially limited Q anomalies in the layer above the BSR indicate the presence of gas hydrates in marine sediments in this setting. Hence, our workflow to analyze Q using high-resolution P-cable 3D seismic data with a large bandwidth could be a potential technique to detect and directly map the distribution of gas hydrates in marine sediments.


Sign in / Sign up

Export Citation Format

Share Document