Computationally efficient three-dimensional acoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropic media with sparse direct solver

Geophysics ◽  
2014 ◽  
Vol 79 (5) ◽  
pp. T257-T275 ◽  
Author(s):  
Stephane Operto ◽  
Romain Brossier ◽  
Laure Combe ◽  
Ludovic Métivier ◽  
Alessandra Ribodetti ◽  
...  
2018 ◽  
Vol 32 (3) ◽  
pp. 775-802 ◽  
Author(s):  
Francesco Marmo ◽  
Salvatore Sessa ◽  
Nicoló Vaiana ◽  
Daniela De Gregorio ◽  
Luciano Rosati

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. C1-C14 ◽  
Author(s):  
Ramzi Djebbi ◽  
Tariq Alkhalifah

Multiparameter full-waveform inversion for transversely isotropic media with a vertical axis of symmetry (VTI) suffers from the trade-off between the parameters. The trade-off results in the leakage of one parameter’s update into the other. It affects the accuracy and convergence of the inversion. The sensitivity analyses suggested a parameterization using the horizontal velocity [Formula: see text], Thomsen’s parameter [Formula: see text], and the anelliptic parameter [Formula: see text] to reduce the trade-off for surface recorded seismic data. We aim to invert for this parameterization using the scattering integral (SI) method. The available Born sensitivity kernels, within this approach, can be used to calculate additional inversion information. We mainly compute the diagonal of the approximate Hessian, used as a conjugate-gradient preconditioner, and the gradients’ step lengths. We consider modeling in the frequency domain. The large computational cost of the SI method can be avoided with direct Helmholtz equation solvers. We applied our method to the VTI Marmousi II model for various inversion strategies. We found that we can invert the [Formula: see text] accurately. For the [Formula: see text] parameter, only the short wavelengths are well-recovered. On the other hand, the [Formula: see text] parameter impact is weak on the inversion results and can be fixed. However, a good background [Formula: see text], with accurate long wavelengths, is needed to correctly invert for [Formula: see text]. Furthermore, we invert a real data set acquired by CGG from offshore Australia. We simultaneously invert all three parameters using our inversion approach. The velocity model is improved, and additional layers are recovered. We confirm the accuracy of the results by comparing them with well-log information, as well as looking at the data and angle gathers.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S51-S59 ◽  
Author(s):  
Daniela Amazonas ◽  
Rafael Aleixo ◽  
Jörg Schleicher ◽  
Jessé C. Costa

Standard real-valued finite-difference (FD) and Fourier finite-difference (FFD) migrations cannot handle evanescent waves correctly, which can lead to numerical instabilities in the presence of strong velocity variations. A possible solution to these problems is the complex Padé approximation, which avoids problems with evanescent waves by rotating the branch cut of the complex square root. We have applied this approximation to the acoustic wave equation for vertical transversely isotropic media to derive more stable FD and hybrid FD/FFD migrations for such media. Our analysis of the dispersion relation of the new method indicates that it should provide more stable migration results with fewer artifacts and higher accuracy at steep dips. Our studies lead to the conclusion that the rotation angle of the branch cut that should yield the most stable image is 60° for FD migration, as confirmed by numerical impulse responses and work with synthetic data.


2019 ◽  
Vol 24 (12) ◽  
pp. 3806-3822
Author(s):  
A Amiri-Hezaveh ◽  
P Karimi ◽  
M Ostoja-Starzewski

A stress-based approach to the analysis of linear electro-magneto-elastic materials is proposed. Firstly, field equations for linear electro-magneto-elastic solids are given in detail. Next, as a counterpart of coupled governing equations in terms of the displacement field, generalized stress equations of motion for the analysis of three-dimensional (3D) problems Are obtained – they supply a more convenient basis when mechanical boundary conditions are entirely tractions. Then, a sufficient set of conditions for the corresponding solution of generalized stress equations of motion to be unique are detailed in a uniqueness theorem. A numerical passage to obtain the solution of such equations is then given by generalizing a reciprocity theorem in terms of stress for such materials. Finally, as particular cases of the general 3D form, the stress equations of motion for planar problems (plane strain and Generalized plane stress) for transversely isotropic media are formulated.


Sign in / Sign up

Export Citation Format

Share Document