Mineral substitution: Separating the effects of fluids, minerals, and microstructure on P- and S-wave velocities

Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. D197-D210 ◽  
Author(s):  
Nishank Saxena ◽  
Gary Mavko ◽  
Ronny Hofmann ◽  
Sean Dolan ◽  
L. Taras Bryndzia

We have developed a new technique of mineral substitution that accurately predicts the change in rock stiffness upon changes in the elastic properties of the rock mineral frame, assuming no changes in the microstructure or mineral volume fraction. The method is rigorous, the results are realizable, and the predictions are always within bounds. We have applied mineral substitution to separate the effects of composition (mineralogy and pore fill) on the rock stiffness from the effects of microstructure, i.e., porosity and pore shape. Application of mineral substitution on laboratory measured data sets of effective moduli (sandstones, limestones, and dolomites) revealed that if the original minerals making up the frame of sandstones (predominantly quartz) were replaced (or substituted) with calcite mineral properties, the newly predicted P- ([Formula: see text]) and S-wave velocity ([Formula: see text]) trends for the modified sandstones were very similar to the previously observed quadratic [Formula: see text]-[Formula: see text] empirical trends for limestones. Similarly, the [Formula: see text]-[Formula: see text] trends for modified limestones, with original minerals replaced by quartz mineral properties, were very similar to the observed linear [Formula: see text]-[Formula: see text] empirical trends for sandstones. The remaining minor differences between the modified and previously observed [Formula: see text]-[Formula: see text] trends might be attributed to the differences in rock microstructure. These findings are striking and suggest that [Formula: see text]-[Formula: see text] trends of natural rocks are dominated by mineralogy and the effects of microstructure are minor. We also found new [Formula: see text]-[Formula: see text] trends for rocks composed of various minerals, including zeolite, feldspar, pyrite, alpha-cristobalite, and halite.

1980 ◽  
Vol 17 (9) ◽  
pp. 1141-1151 ◽  
Author(s):  
A. G. Green

Refracted P-wave and S-wave arrivals are studied from a fourfold multicoverage seismic experiment that has been conducted across a region that spans the contact between the Thompson nickel belt and the Churchill Province in northern Manitoba. A new technique for the calculation of accurate delay times and basement velocities for unreversed multicoverage data is introduced. In this technique, the times of rays between selected shots and receivers are combined to give initial delay time corrections and a subsequent iterative least-squares analysis yields the final delay time corrections and estimates of the basement P-wave velocities. The P-wave velocities correlate well with the basement geology and have been used to refine the location of the contact between the Moak Lake gneisses of the Thompson nickel belt and the Kisseynew gneisses of the Churchill Province. From the P-wave velocities and S-wave attenuation it is concluded that this contact is a fault zone.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. R105-R115 ◽  
Author(s):  
Edgar Manukyan ◽  
Sabine Latzel ◽  
Hansruedi Maurer ◽  
Stefano Marelli ◽  
Stewart A. Greenhalgh

Elastic-waveform inversions have the potential to provide detailed subsurface images of the elastic parameters (P- and S-wave velocities and density), but acquisition of suitable data sets and their inversion are nontrivial tasks. We explore the information content offered by elastic-waveform data by means of a 2D synthetic study. Comprehensive noise-free data sets that include recordings based on multicomponent (directed) sources and multicomponent (vector) receivers that fully surround the area of interest allow all elastic parameters to be reliably recovered. Results that are almost as good can be achieved with the more commonly used crosshole configuration. If only single-source components (e.g., those oriented perpendicular to the borehole walls) are used, then there is no significant quality degradation of the tomographic images. Crosshole experiments that include pressure sources and multicomponent receivers still allow P- and S-wave velocities to be recovered, but such data sets contain virtually no information about the density. Finally, seismic data collected with omnidirectional pressure sources and pressure receivers contain information about P- and S-wave velocities, but there are pronounced trade-offs between these parameters. This is demonstrated through formal model-resolution analyses. This study concludes that seismic data recorded with pressure sources and 2C receivers offer the best compromise between acquisition efficiency and data-information content.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. E91-E99 ◽  
Author(s):  
Tanima Dutta ◽  
Gary Mavko ◽  
Tapan Mukerji

We have developed a recipe for using closed-form expressions of effective-medium models to predict velocities in unconsolidated sandstones. The commonly used Hertz-Mindlin effective-medium model for granular media often predicts elastic wave velocities that are higher, and [Formula: see text] ratios that are lower, than those observed in laboratory and well log measurements in unconsolidated sediments. We use the extended Walton model, which introduces a parameter [Formula: see text] to represent the fraction of grain contacts that are perfectly adhered. Using the extended Walton model with [Formula: see text] ranging from 0.3 to 1, we obtain new empirical relations between the coordination number (C), porosity, and pressure for P- and S-wave velocities by inverting dynamic measurements on dry, unconsolidated sands. We propose using the extended Walton model [Formula: see text] along with these new C-porosity and C-pressure relations to study the mechanical compaction of unconsolidated sandstones. The model has been tested on two experimental data sets. It provides a reasonable fit to observed P- and S-wave velocities and specifically improves shear-wave predictions.


2008 ◽  
Vol 44-46 ◽  
pp. 871-878 ◽  
Author(s):  
Chu Yang Luo ◽  
Jun Jiang Xiong ◽  
R.A. Shenoi

This paper outlines a new technique to address the paucity of data in determining fatigue life and performance based on reliability concepts. Two new randomized models are presented for estimating the safe life and pS-N curve, by using the standard procedure for statistical analysis and dealing with small sample numbers of incomplete data. The confidence level formulations for the safe and p-S-N curve are also given. The concepts are then applied for the determination of the safe life and p-S-N curve. Two sets of fatigue tests for the safe life and p-S-N curve are conducted to validate the presented method, demonstrating the practical use of the proposed technique.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


1995 ◽  
Vol 85 (6) ◽  
pp. 1821-1834
Author(s):  
Toshimi Satoh ◽  
Toshiaki Sato ◽  
Hiroshi Kawase

Abstract We evaluate the nonlinear behavior of soil sediments during strong ground shaking based on the identification of their S-wave velocities and damping factors for both the weak and strong motions observed on the surface and in a borehole at Kuno in the Ashigara Valley, Japan. First we calculate spectral ratios between the surface station KS2 and the borehole station KD2 at 97.6 m below the surface for the main part of weak and strong motions. The predominant period for the strong motion is apparently longer than those for the weak motions. This fact suggests the nonlinearity of soil during the strong ground shaking. To quantify the nonlinear behavior of soil sediments, we identify their S-wave velocities and damping factors by minimizing the residual between the observed spectral ratio and the theoretical amplification factor calculated from the one-dimensional wave propagation theory. The S-wave velocity and the damping factor h (≈(2Q)−1) of the surface alluvial layer identified from the main part of the strong motion are about 10% smaller and 50% greater, respectively, than those identified from weak motions. The relationships between the effective shear strain (=65% of the maximum shear strain) calculated from the one-dimensional wave propagation theory and the shear modulus reduction ratios or the damping factors estimated by the identification method agree well with the laboratory test results. We also confirm that the soil model identified from a weak motion overestimates the observed strong motion at KS2, while that identified from the strong motion reproduces the observed. Thus, we conclude that the main part of the strong motion, whose maximum acceleration at KS2 is 220 cm/sec2 and whose duration is 3 sec, has the potential of making the surface soil nonlinear at an effective shear strain on the order of 0.1%. The S-wave velocity in the surface alluvial layer identified from the part just after the main part of the strong motion is close to that identified from weak motions. This result suggests that the shear modulus recovers quickly as the shear strain level decreases.


2010 ◽  
Vol 54 (5) ◽  
pp. 647-654 ◽  
Author(s):  
FuPing Liu ◽  
XianJun Meng ◽  
YuMei Wang ◽  
GuoQiang Shen ◽  
ChangChun Yang

1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


2008 ◽  
pp. 2105-2120
Author(s):  
Kesaraporn Techapichetvanich ◽  
Amitava Datta

Both visualization and data mining have become important tools in discovering hidden relationships in large data sets, and in extracting useful knowledge and information from large databases. Even though many algorithms for mining association rules have been researched extensively in the past decade, they do not incorporate users in the association-rule mining process. Most of these algorithms generate a large number of association rules, some of which are not practically interesting. This chapter presents a new technique that integrates visualization into the mining association rule process. Users can apply their knowledge and be involved in finding interesting association rules through interactive visualization, after obtaining visual feedback as the algorithm generates association rules. In addition, the users gain insight and deeper understanding of their data sets, as well as control over mining meaningful association rules.


Sign in / Sign up

Export Citation Format

Share Document