scholarly journals Bounds of elastic parameters characterizing transversely isotropic media: Application to shales

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C243-C252 ◽  
Author(s):  
Rune M. Holt

Several rocks, and in particular shales, are often described as transversely isotropic (TI) materials. Geophysical data coverage does not always permit reliable determination of all five elastic parameters, neither in seismic and sonic data from the field nor in laboratory measurements. Data may, however, be constrained by the existence of bounds on elastic moduli, derived from the fundamental requirement of positive elastic energy. Conditioned bounds are described for engineering parameters such as Poisson’s ratios as well as anisotropy coefficients such as the moveout parameter [Formula: see text] and the anellipticity parameter [Formula: see text]. “Conditioned bounds” means bounds that in general depend on some of the other elastic moduli: The bounds we have evaluated are controlled primarily by P- and S-wave moduli obtained from wave propagation along a symmetry axis and to some extent by P- and S-wave anisotropies. Such data may be acquired more easily from geophysical measurements. We have inspected the laboratory data obtained with various types of shales under different testing conditions, and none of them failed to adapt to the bounds. The data indicate, for instance, clear distinctions between how the proximity to bounds is driven by stress changes for saturated versus nonsaturated shales.

Geophysics ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 564-567 ◽  
Author(s):  
J. Wright

Studies have shown that elastic properties of materials such as shale and chalk are anisotropic. With the increasing emphasis on extraction of lithology and fluid content from changes in reflection amplitude with shot‐to‐group offset, one needs to know the effects of anisotropy on reflectivity. Since anisotropy means that velocity depends upon the direction of propagation, this angular dependence of velocity is expected to influence reflectivity changes with offset. These effects might be particularly evident in deltaic sand‐shale sequences since measurements have shown that the P-wave velocity of shales in the horizontal direction can be 20 percent higher than the vertical P-wave velocity. To investigate this behavior, a computer program was written to find the P- and S-wave reflectivities at an interface between two transversely isotropic media with the axis of symmetry perpendicular to the interface. Models for shale‐chalk and shale‐sand P-wave reflectivities were analyzed.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C9-C20 ◽  
Author(s):  
Qi Hao ◽  
Tariq Alkhalifah

Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter [Formula: see text] in Thomsen’s notation and the S-wave attenuation coefficient [Formula: see text] in Zhu and Tsvankin’s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the proposed eikonal equation to realistic attenuating media, an alternative perturbation solution to the proposed eikonal equation, and the feasibility of applying the proposed nonhyperbolic equation for the imaginary part of the complex-valued traveltime to invert for interval attenuation parameters.


Geophysics ◽  
1982 ◽  
Vol 47 (5) ◽  
pp. 771-783 ◽  
Author(s):  
J. E. White

Radiation of elastic waves from a point force or from a localized torque into a transversely isotropic medium has been formulated in terms of displacement potentials, and transient waveforms have been computed by numerical Fourier inversion. For isotropic sandstone, this procedure yields P‐ and S‐wave pulses whose arrival times and magnitudes agree with theory. For a range of anisotropic rocks, arrival times of quasi‐P‐waves and quasi‐S‐waves agree with asymptotic theory. For extreme anisotropy, some quasi‐S‐wave pulses arrive at times which are not predicted by asymptotic theory. Magnitudes have not been compared with results of asymptotic theory, but decrease with distance appears to be in agreement. This Fourier inversion method gives near‐source changes in waveform which are not obtainable from the asymptotic theory.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C337-C354 ◽  
Author(s):  
Jörg Schleicher ◽  
Jessé C. Costa

The wave equation can be tailored to describe wave propagation in vertical-symmetry axis transversely isotropic (VTI) media. The qP- and qS-wave eikonal equations derived from the VTI wave equation indicate that in the pseudoacoustic approximation, their dispersion relations degenerate into a single one. Therefore, when using this dispersion relation for wave simulation, for instance, by means of finite-difference approximations, both events are generated. To avoid the occurrence of the pseudo-S-wave, the qP-wave dispersion relation alone needs to be approximated. This can be done with or without the pseudoacoustic approximation. A Padé expansion of the exact qP-wave dispersion relation leads to a very good approximation. Our implementation of a separable version of this equation in the mixed space-wavenumber domain permits it to be compared with a low-rank solution of the exact qP-wave dispersion relation. Our numerical experiments showed that this approximation can provide highly accurate wavefields, even in strongly anisotropic inhomogeneous media.


Sign in / Sign up

Export Citation Format

Share Document