Joint optimization of vertical component gravity and P-wave first arrivals by simulated annealing

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. ID59-ID71 ◽  
Author(s):  
Kyle Basler-Reeder ◽  
John Louie ◽  
Satish Pullammanappallil ◽  
Graham Kent

Joint seismic and gravity analyses of the San Emidio geothermal field in the northwest Basin and Range province of Nevada demonstrate that joint optimization changes interpretation outcomes. The prior 0.3–0.5 km deep basin interpretation gives way to a deeper than 1.3 km basin model. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts, flattening antiformal reflectors that could have been interpreted as folds. Furthermore, joint optimization provides a clearer picture of the rangefront fault by increasing the depth of constrained velocities, which improves reflector coherency at depth. This technique provides new insight when applied to existing data sets and could replace the existing strategy of forward modeling to match gravity data. We have achieved stable joint optimization through simulated annealing, a global optimization algorithm that does not require an accurate initial model. Balancing the combined seismic-gravity objective function is accomplished by a new approach based on analysis of Pareto charts. Gravity modeling uses an efficient convolution model, and the basis of seismic modeling is the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests found that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Restricted offset-range migration analysis provides insights into precritical and gradient reflections in the data set.

Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Lopamudra Roy ◽  
Mrinal K. Sen ◽  
Donald D. Blankenship ◽  
Paul L. Stoffa ◽  
Thomas G. Richter

Interpretation of gravity data warrants uncertainty estimation because of its inherent nonuniqueness. Although the uncertainties in model parameters cannot be completely reduced, they can aid in the meaningful interpretation of results. Here we have employed a simulated annealing (SA)–based technique in the inversion of gravity data to derive multilayered earth models consisting of two and three dimensional bodies. In our approach, we assume that the density contrast is known, and we solve for the coordinates or shapes of the causative bodies, resulting in a nonlinear inverse problem. We attempt to sample the model space extensively so as to estimate several equally likely models. We then use all the models sampled by SA to construct an approximate, marginal posterior probability density function (PPD) in model space and several orders of moments. The correlation matrix clearly shows the interdependence of different model parameters and the corresponding trade-offs. Such correlation plots are used to study the effect of a priori information in reducing the uncertainty in the solutions. We also investigate the use of derivative information to obtain better depth resolution and to reduce underlying uncertainties. We applied the technique on two synthetic data sets and an airborne-gravity data set collected over Lake Vostok, East Antarctica, for which a priori constraints were derived from available seismic and radar profiles. The inversion results produced depths of the lake in the survey area along with the thickness of sediments. The resulting uncertainties are interpreted in terms of the experimental geometry and data error.


2020 ◽  
Vol 8 (2) ◽  
pp. SH1-SH17 ◽  
Author(s):  
J. Kim Welford ◽  
Deric Cameron ◽  
Erin Gillis ◽  
Victoria Mitchell ◽  
Richard Wright

A regional long-offset 2D seismic reflection program undertaken along the Labrador margin of the Labrador Sea, Canada, and complemented by the acquisition of coincident gravity data, has provided an extensive data set with which to image and model the sparsely investigated outer shelf, slope, and deepwater regions. Previous interpretation of the seismic data revealed the extent of Mesozoic and Cenozoic basins and resulted in the remapping of the basin configuration for the entire margin. To map the synrift package and improve understanding of the geometry and extent of these basins, we have undertaken joint seismic interpretation and gravity forward modeling to reduce uncertainty in the identification of the prerift basement, which varies between Paleozoic shelfal deposits and Precambrian crystalline rocks, with similar density characteristics. With this iterative approach, we have obtained new depth to basement constraints and have deduced further constraints on crustal thickness variations along the Labrador margin. At the crustal scale, extreme localized crustal thinning has been revealed along the southern and central portions of the Labrador margin, whereas a broad, margin-parallel zone of thicker crust has been detected outboard of the continental shelf along the northern Labrador margin. Our final gravity models suggest that Late Cretaceous rift packages from further south extend along the entire Labrador margin and open the possibility of a Late Cretaceous source rock fairway extending into the Labrador basins.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 690-700 ◽  
Author(s):  
Josef Holzschuh

Compressional (P) wave and shear (S) wave seismic reflection techniques were used to delineate the sand and gravel aquifer within a highly saline clay‐filled paleochannel in the Eastern Goldfields of Western Australia. The seismic refraction and gravity methods were also used to investigate the paleochannel. The unsaturated loose fine‐grained sand up to 10 m in depth at the surface is a major factor in degrading subsurface imaging. The seismic processing needed to be precise, with accurate static corrections and normal moveout corrections. Deconvolution enhanced the aquifer and other paleochannel reflectors. P‐wave reflection and refraction layer depths had good correlation and showed a total of six boundaries: (1) water table, (2) change in velocity (compaction) in the paleochannel sediments, (3) sand and gravel aquifer, (4) red‐brown saprolite and green saprolite boundary, (5) weathered bedrock, and (6) unweathered bedrock. P‐wave explosive and hammer sources were found to have similar signal characteristics, and the aquifer and bedrock were both imaged using the hammer source. The deep shots below the water table have the most broadband frequency response for reflections, but stacking clear reflections was difficult. The S‐wave reflection results showed high lateral and vertical resolution of the basal saprolite clay, the sand and gravel aquifer, and very shallow clays above the aquifer. The S‐wave reflection stacking velocities were 10–20% of the P‐waves, increasing the resolution of the S‐wave section. The gravity data were modelled to fit the known drilling and P‐wave seismic reflection depths. The refraction results did not identify the top of bedrock, so refraction depths were not used for the gravity modeling in this highly weathered environment. The final gravity model mapped the bedrock topography beyond the lateral extent of the seismic and drilling data.


Geophysics ◽  
1988 ◽  
Vol 53 (4) ◽  
pp. 431-433 ◽  
Author(s):  
R. M. René ◽  
J. L. Fitter ◽  
D. J. Murray ◽  
J. K. Walters

Seismic refraction and CDP reflection profiles were acquired across mud flats of the Great Salt Lake Desert, Utah, during the summer of 1983. a combination of weight drops, horizontal hammers, buried explosives, and explosives detonated in air (Poulter method) was used. A 6.4 km refraction and single‐fold reflection profile indicates the presence of a shallow depression (Donner Reed basin) eastb of Donner Reed pass in the Silver Island Mountains. A basin floor ramp of Paleozoic rocks dipping approximately 30 degrees east into the Crater Island graben is interpreted beneath a 4.6 km 12-fold CDP reflection profile obtained by the Poulter method. This ramp extends beneath at least 0.8 km of condolidated Neogene sediments and 0.8 km of younger (largely unconsolidated) sediments. Weight‐drop and horizontal‐hammer profiles for the critical refraction along the Silurian Laketown dolomite yield P-wave and S-wave velocity estimates of 5270 ± 100 and [Formula: see text], respectively. The mud flats, with their laterally uniform finegrained sediments and shallow water table, provided excellent coupling of seismic energy. Air shots of 4.1 to 5.4 kg explosives without a source array gave good penetration to a depth of about 1.6 km. Partial migration before stack facilitated estimation of moveout velocities in the case of layers onlapping against a basin floor ramp, even though the maximum dips were only about 30 degrees. Gravity modeling and seismic ray tracing through intervals of constant velocity bounded by polynomial interfaces aided synergetic interpretation of the reflection, refraction, and gravity data.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. B79-B87 ◽  
Author(s):  
Christian Stotter ◽  
Erika Angerer

A 2D vibroseis line was acquired in the Vienna Basin (Austria) for the purpose of comparing the data of digital multicomponent single sensors based on microelectromechanical system (MEMS) sensors alongside conventional vertical-component geophone arrays. For efficient removal of coherent noise during processing, all source points were recorded in single-sweep mode, i.e., no vertical stacking was performed in the field. On this densely sampled data set, several noise-reduction techniques, such as digital array forming, frequency-wavenumber (f-k) filtering in shot and receiver domains, and polarization filters, proved to be valuable in reducing source-generated noise. The results showed that, with the use of single-sweep recording and polarization filter techniques, it is possible to produce seismic sections for a single-receiver three-component (3C) MEMS line that are comparable to a conventional geophone array line in signal-to-noise ratio. However, the higher number of single geophones and hence the stronger attenuation of random noise in the conventional array resulted in an advantage for the analog geophone data set. The second goal for this survey was to evaluate additional information contained in the horizontal components of the MEMS data. The multicomponent data allowed for the processing of mode-converted shear-wave data, performed for the first time in the Vienna Basin. Azimuthal anisotropy related to horizontal stresses was observed in the Neogene section of the shear-wave data set. A PP-PS event correlation allowed the identification of major shallow horizons. Interpretation of the final sections confirmed that the PS data are useful to distinguish between gas reservoirs and high-porosity water sands, which can cause similar P-wave amplitude variation with offset (AVO) effects.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. G57-G69 ◽  
Author(s):  
Fillipe C. L. Siqueira ◽  
Vanderlei C. Oliveira Jr. ◽  
Valéria C. F. Barbosa

We have developed a new iterative scheme for processing gravity data using a fast equivalent-layer technique. This scheme estimates a 2D mass distribution on a fictitious layer located below the observation surface and with finite horizontal dimensions composed by a set of point masses, one directly beneath each gravity station. Our method starts from an initial mass distribution that is proportional to the observed gravity data. Iteratively, our approach updates the mass distribution by adding mass corrections that are proportional to the gravity residuals. At each iteration, the computation of the residual is accomplished by the forward modeling of the vertical component of the gravitational attraction produced by all point masses setting up the equivalent layer. Our method is grounded on the excess of mass and on the positive correlation between the observed gravity data and the masses on the equivalent layer. Mathematically, the algorithm is formulated as an iterative least-squares method that requires neither matrix multiplications nor the solution of linear systems, leading to the processing of large data sets. The time spent on the forward modeling accounts for much of the total computation time, but this modeling demands a small computational effort. We numerically prove the stability of our method by comparing our solution with the one obtained via the classic equivalent-layer technique with the zeroth-order Tikhonov regularization. After estimating the mass distribution, we obtain a desired processed data by multiplying the matrix of the Green’s functions associated with the desired processing by the estimated mass distribution. We have applied the proposed method to interpolate, calculate the horizontal components, and continue gravity data upward (or downward). Testing on field data from the Vinton salt dome, Louisiana, USA, confirms the potential of our approach in processing large gravity data set over on undulating surface.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. J71-J80 ◽  
Author(s):  
Maria A. Annecchione ◽  
Pierre Keating ◽  
Michel Chouteau

Airborne gravimeters based on inertial navigation system (INS) technology are capable, in theory, of providing direct observations of the horizontal components of anomalous gravity. However, their accuracy and usefulness in geophysical or geological applications is unknown. Determining the accuracy of airborne horizontal component data is complicated by the lack of ground-surveyed control data. We determine the accuracy of airborne vector gravity data internally using repeatedly flown line data. Multilevel wavelet analyses of raw vector gravity data elucidate the limiting error source for the horizontal components. We demonstrate the usefulness of the airborne horizontal component data by performing Euler deconvolutions on real vector gravity data. The accuracy of the horizontal components is lower than the accuracy of the vertical component. Wavelet analyses of data from a test flight over Alexandria, Ontario, Canada, show that the main source of error limiting the accuracy of the horizontal components is time-dependent platform alignment errors. Euler deconvolutions performed on the Timmins data set show that the horizontal components help in constraining the 3D locations of regional geological features. It is thus concluded that the quality of the airborne horizontal component data is sufficient to motivate their use in resource exploration and geological applications.


Geophysics ◽  
1988 ◽  
Vol 53 (1) ◽  
pp. 76-84 ◽  
Author(s):  
E. L. Majer ◽  
T. V. McEvilly ◽  
F. S. Eastwood ◽  
L. R. Myer

In a pilot vertical seismic profiling study, P-wave and cross‐polarized S-wave vibrators were used to investigate the potential utility of shear‐wave anisotropy measurements in characterizing a fractured rock mass. The caprock at The Geysers geothermal field was found to exhibit about an 11 percent velocity variation between SH-waves and SV-waves generated by rotating the S-wave vibrator orientation to two orthogonal polarizations for each survey level in the well. The effect is generally consistent with the equivalent anisotropy expected from the known fracture geometry.


Sign in / Sign up

Export Citation Format

Share Document