Validating airborne vector gravimetry data for resource exploration

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. J71-J80 ◽  
Author(s):  
Maria A. Annecchione ◽  
Pierre Keating ◽  
Michel Chouteau

Airborne gravimeters based on inertial navigation system (INS) technology are capable, in theory, of providing direct observations of the horizontal components of anomalous gravity. However, their accuracy and usefulness in geophysical or geological applications is unknown. Determining the accuracy of airborne horizontal component data is complicated by the lack of ground-surveyed control data. We determine the accuracy of airborne vector gravity data internally using repeatedly flown line data. Multilevel wavelet analyses of raw vector gravity data elucidate the limiting error source for the horizontal components. We demonstrate the usefulness of the airborne horizontal component data by performing Euler deconvolutions on real vector gravity data. The accuracy of the horizontal components is lower than the accuracy of the vertical component. Wavelet analyses of data from a test flight over Alexandria, Ontario, Canada, show that the main source of error limiting the accuracy of the horizontal components is time-dependent platform alignment errors. Euler deconvolutions performed on the Timmins data set show that the horizontal components help in constraining the 3D locations of regional geological features. It is thus concluded that the quality of the airborne horizontal component data is sufficient to motivate their use in resource exploration and geological applications.

Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. V41-V59 ◽  
Author(s):  
Olena Tiapkina ◽  
Martin Landrø ◽  
Yuriy Tyapkin ◽  
Brian Link

The advent of single receiver point, multi-component geophones has necessitated that ground roll be removed in the processing flow rather than through acquisition design. A wide class of processing methods for ground-roll elimination is polarization filtering. A number of these methods use singular value decomposition (SVD) or some related transformations. We focus on a single-station SVD-based polarization filter that we consider to be one of the best in the industry. The method is comprised of two stages: (1) ground-roll detection and (2) ground-roll estimation and filtering. To detect the ground roll, a special attribute dependent on the singular values of a three-column matrix formed by a sliding time window is used. The ground roll is approximated and subtracted using the first two eigenimages of this matrix. To limit the possible damage to the signal, the filter operates within the record intervals where the ground roll is detected and within the ground-roll frequency bandwidth only. We improve the ground-roll detector to make it theoretically insensitive to ambient noise and more sensitive to the presence of ground roll. The advantage of the new detector is demonstrated on synthetic and field data sets. We estimate theoretically and with synthetic data the attenuation of the underlying reflections that can be caused by the polarization filter. We show that the underlying signal always loses almost all the energy on the vertical component and on the horizontal component in the ground-roll propagation plane and within the ground-roll frequency bandwidth. The only signal component, if it exists, that can retain a significant part of its energy is the horizontal component orthogonal to the above plane. When 2D 3C field operations are conducted, the signal particle motion can deviate from the ground-roll propagation plane and can therefore retain some of its energy due to a set of offline reflections. In the case of 3D 3C seismic surveys, the reflected signal always deviates from the ground-roll propagation plane on the receiver lines that do not contain the source. This is confirmed with a 2.5D 3C synthetic data set. We discuss when the ability of the filter to effectively subtract the ground roll may, or may not, allow us to ignore the inevitable harm that is done to the underlying reflected waves.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. ID59-ID71 ◽  
Author(s):  
Kyle Basler-Reeder ◽  
John Louie ◽  
Satish Pullammanappallil ◽  
Graham Kent

Joint seismic and gravity analyses of the San Emidio geothermal field in the northwest Basin and Range province of Nevada demonstrate that joint optimization changes interpretation outcomes. The prior 0.3–0.5 km deep basin interpretation gives way to a deeper than 1.3 km basin model. Kirchoff prestack depth migrations reveal that joint optimization ameliorates shallow velocity artifacts, flattening antiformal reflectors that could have been interpreted as folds. Furthermore, joint optimization provides a clearer picture of the rangefront fault by increasing the depth of constrained velocities, which improves reflector coherency at depth. This technique provides new insight when applied to existing data sets and could replace the existing strategy of forward modeling to match gravity data. We have achieved stable joint optimization through simulated annealing, a global optimization algorithm that does not require an accurate initial model. Balancing the combined seismic-gravity objective function is accomplished by a new approach based on analysis of Pareto charts. Gravity modeling uses an efficient convolution model, and the basis of seismic modeling is the highly efficient Vidale eikonal equation traveltime generation technique. Synthetic tests found that joint optimization improves velocity model accuracy and provides velocity control below the deepest headwave raypath. Restricted offset-range migration analysis provides insights into precritical and gradient reflections in the data set.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. G57-G69 ◽  
Author(s):  
Fillipe C. L. Siqueira ◽  
Vanderlei C. Oliveira Jr. ◽  
Valéria C. F. Barbosa

We have developed a new iterative scheme for processing gravity data using a fast equivalent-layer technique. This scheme estimates a 2D mass distribution on a fictitious layer located below the observation surface and with finite horizontal dimensions composed by a set of point masses, one directly beneath each gravity station. Our method starts from an initial mass distribution that is proportional to the observed gravity data. Iteratively, our approach updates the mass distribution by adding mass corrections that are proportional to the gravity residuals. At each iteration, the computation of the residual is accomplished by the forward modeling of the vertical component of the gravitational attraction produced by all point masses setting up the equivalent layer. Our method is grounded on the excess of mass and on the positive correlation between the observed gravity data and the masses on the equivalent layer. Mathematically, the algorithm is formulated as an iterative least-squares method that requires neither matrix multiplications nor the solution of linear systems, leading to the processing of large data sets. The time spent on the forward modeling accounts for much of the total computation time, but this modeling demands a small computational effort. We numerically prove the stability of our method by comparing our solution with the one obtained via the classic equivalent-layer technique with the zeroth-order Tikhonov regularization. After estimating the mass distribution, we obtain a desired processed data by multiplying the matrix of the Green’s functions associated with the desired processing by the estimated mass distribution. We have applied the proposed method to interpolate, calculate the horizontal components, and continue gravity data upward (or downward). Testing on field data from the Vinton salt dome, Louisiana, USA, confirms the potential of our approach in processing large gravity data set over on undulating surface.


Author(s):  
David M. Wittman

Galilean relativity is a useful description of nature at low speed. Galileo found that the vertical component of a projectile’s velocity evolves independently of its horizontal component. In a frame that moves horizontally along with the projectile, for example, the projectile appears to go straight up and down exactly as if it had been launched vertically. The laws of motion in one dimension are independent of any motion in the other dimensions. This leads to the idea that the laws of motion (and all other laws of physics) are equally valid in any inertial frame: the principle of relativity. This principle implies that no inertial frame can be considered “really stationary” or “really moving.” There is no absolute standard of velocity (contrast this with acceleration where Newton’s first law provides an absolute standard). We discuss some apparent counterexamples in everyday experience, and show how everyday experience can be misleading.


2001 ◽  
Vol 204 (24) ◽  
pp. 4301-4309 ◽  
Author(s):  
J. Okada ◽  
Y. Toh

SUMMARY Arthropods have hair plates that are clusters of mechanosensitive hairs, usually positioned close to joints, which function as proprioceptors for joint movement. We investigated how angular movements of the antenna of the cockroach (Periplaneta americana) are coded by antennal hair plates. A particular hair plate on the basal segment of the antenna, the scapal hair plate, can be divided into three subgroups: dorsal, lateral and medial. The dorsal group is adapted to encode the vertical component of antennal direction, while the lateral and medial groups are specialized for encoding the horizontal component. Of the three subgroups of hair sensilla, those of the lateral scapal hair plate may provide the most reliable information about the horizontal position of the antenna, irrespective of its vertical position. Extracellular recordings from representative sensilla of each scapal hair plate subgroup revealed the form of the single-unit impulses in response to hair deflection. The mechanoreceptors were characterized as typically phasic-tonic. The tonic discharge was sustained indefinitely (>20 min) as long as the hair was kept deflected. The spike frequency in the transient (dynamic) phase was both velocity- and displacement-dependent, while that in the sustained (steady) phase was displacement-dependent.


2016 ◽  
Vol 14 (1) ◽  
pp. e1201 ◽  
Author(s):  
MaoSheng Ge ◽  
Pute Wu ◽  
Delan Zhu ◽  
Daniel P. Ames

<p>An indoor experiment was conducted to analyze the movement characteristics of different sized droplets and their influence on water application rate distribution and kinetic energy distribution. Radial droplets emitted from a Nelson D3000 sprinkler nozzle under 66.3, 84.8, and 103.3 kPa were measured in terms of droplet velocity, landing angle, and droplet kinetic energy and results were compared to natural rainfall characteristics. Results indicate that sprinkler irrigation droplet landing velocity for all sizes of droplets is not related to nozzle pressure and the values of landing velocity are very close to that of natural rainfall. The velocity horizontal component increases with radial distance while the velocity vertical component decreases with radial distance. Additionally, landing angle of all droplet sizes decreases with radial distance. The kinetic energy is decomposed into vertical component and horizontal component due to the oblique angles of droplet impact on the surface soil, and this may aggravate soil erosion. Therefore the actual oblique angle of impact should be considered in actual field conditions and measures should be taken for remediation of soil erosion if necessary.</p>


Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. J1-J12 ◽  
Author(s):  
Lopamudra Roy ◽  
Mrinal K. Sen ◽  
Donald D. Blankenship ◽  
Paul L. Stoffa ◽  
Thomas G. Richter

Interpretation of gravity data warrants uncertainty estimation because of its inherent nonuniqueness. Although the uncertainties in model parameters cannot be completely reduced, they can aid in the meaningful interpretation of results. Here we have employed a simulated annealing (SA)–based technique in the inversion of gravity data to derive multilayered earth models consisting of two and three dimensional bodies. In our approach, we assume that the density contrast is known, and we solve for the coordinates or shapes of the causative bodies, resulting in a nonlinear inverse problem. We attempt to sample the model space extensively so as to estimate several equally likely models. We then use all the models sampled by SA to construct an approximate, marginal posterior probability density function (PPD) in model space and several orders of moments. The correlation matrix clearly shows the interdependence of different model parameters and the corresponding trade-offs. Such correlation plots are used to study the effect of a priori information in reducing the uncertainty in the solutions. We also investigate the use of derivative information to obtain better depth resolution and to reduce underlying uncertainties. We applied the technique on two synthetic data sets and an airborne-gravity data set collected over Lake Vostok, East Antarctica, for which a priori constraints were derived from available seismic and radar profiles. The inversion results produced depths of the lake in the survey area along with the thickness of sediments. The resulting uncertainties are interpreted in terms of the experimental geometry and data error.


2021 ◽  
Author(s):  
Ahmed Attia ◽  
Matthew Lawrence

Abstract Distributed Fiber Optics (DFO) technology has been the new face for unconventional well diagnostics. This technology focuses on measuring Distributed Acoustic Sensing (DAS) and Distrusted Temperature Sensing (DTS) to give an in-depth understanding of well productivity pre and post stimulation. Many different completion design strategies, both on surface and downhole, are used to obtain the best fracture network outcome; however, with complex geological features, different fracture designs, and fracture driven interactions (FDIs) effecting nearby wells, it is difficult to grasp a full understanding on completion design performance for each well. Validating completion designs and improving on the learnings found in each data set should be the foundation in developing each field. Capturing a data set with strong evidence of what works and what doesn't, can help the operator make better engineering decisions to make more efficient wells as well as help gauge the spacing between each well. The focus of this paper will be on a few case studies in the Bakken which vividly show how infill wells greatly interfered with production output. A DFO deployed with a 0.6" OD, 23,000-foot-long carbon fiber rod to acquire DAS and DTS for post frac flow, completion, and interference evaluation. This paper will dive into the DFO measurements taken post frac to further explain what effects are seen on completion designs caused by interferences with infill wells; the learnings taken from the DFO post frac were applied to further escalate the understanding and awareness of how infill wells will preform on future pad sites. A showcase of three separate data sets from the Bakken will identify how effective DFO technology can be in evaluating and making informed decisions on future frac completions. In this paper we will also show and discuss how DFO can measure real time FDI events and what measures can be taken to lessen the impact on negative interference caused by infill wells.


2021 ◽  
Author(s):  
Mirko Scheinert ◽  
Philipp Zingerle ◽  
Theresa Schaller ◽  
Roland Pail ◽  
Martin Willberg

&lt;p&gt;In the frame of the IAG Subcommission 2.4f &amp;#8220;Gravity and Geoid in Antarctica&amp;#8221; (AntGG) a first Antarctic-wide grid of ground-based gravity anomalies was released in 2016 (Scheinert et al. 2016). That data set was provided with a grid space of 10 km and covered about 73% of the Antarctic continent. Since then a considerably amount of new data has been made available, mainly collected by means of airborne gravimetry. Regions which were formerly void of any terrestrial gravity observations and have now been surveyed include especially the polar data gap originating from GOCE satellite gravimetry. Thus, it is timely to come up with an updated and enhanced regional gravity field solution for Antarctica. For this, we aim to improve further aspects in comparison to the AntGG 2016 solution: The grid spacing will be enhanced to 5 km. Instead of providing gravity anomalies only for parts of Antarctica, now the entire continent should be covered. In addition to the gravity anomaly also a regional geoid solution should be provided along with further desirable functionals (e.g. gravity anomaly vs. disturbance, different height levels).&lt;/p&gt;&lt;p&gt;We will discuss the expanded AntGG data base which now includes terrestrial gravity data from Antarctic surveys conducted over the past 40 years. The methodology applied in the analysis is based on the remove-compute-restore technique. Here we utilize the newly developed combined spherical-harmonic gravity field model SATOP1 (Zingerle et al. 2019) which is based on the global satellite-only model GOCO05s and the high-resolution topographic model EARTH2014. We will demonstrate the feasibility to adequately reduce the original gravity data and, thus, to also cross-validate and evaluate the accuracy of the data especially where different data set overlap. For the compute step the recently developed partition-enhanced least-squares collocation (PE-LSC) has been used (Zingerle et al. 2021, in review; cf. the contribution of Zingerle et al. in the same session). This method allows to treat all data available in Antarctica in one single computation step in an efficient and fast way. Thus, it becomes feasible to iterate the computations within short time once any input data or parameters are changed, and to easily predict the desirable functionals also in regions void of terrestrial measurements as well as at any height level (e.g. gravity anomalies at the surface or gravity disturbances at constant height).&lt;/p&gt;&lt;p&gt;We will discuss the results and give an outlook on the data products which shall be finally provided to present the new regional gravity field solution for Antarctica. Furthermore, implications for further applications will be discussed e.g. with respect to geophysical modelling of the Earth&amp;#8217;s interior (cf. the contribution of Schaller et al. in session G4.3).&lt;/p&gt;


2020 ◽  
Vol 8 (2) ◽  
pp. SH1-SH17 ◽  
Author(s):  
J. Kim Welford ◽  
Deric Cameron ◽  
Erin Gillis ◽  
Victoria Mitchell ◽  
Richard Wright

A regional long-offset 2D seismic reflection program undertaken along the Labrador margin of the Labrador Sea, Canada, and complemented by the acquisition of coincident gravity data, has provided an extensive data set with which to image and model the sparsely investigated outer shelf, slope, and deepwater regions. Previous interpretation of the seismic data revealed the extent of Mesozoic and Cenozoic basins and resulted in the remapping of the basin configuration for the entire margin. To map the synrift package and improve understanding of the geometry and extent of these basins, we have undertaken joint seismic interpretation and gravity forward modeling to reduce uncertainty in the identification of the prerift basement, which varies between Paleozoic shelfal deposits and Precambrian crystalline rocks, with similar density characteristics. With this iterative approach, we have obtained new depth to basement constraints and have deduced further constraints on crustal thickness variations along the Labrador margin. At the crustal scale, extreme localized crustal thinning has been revealed along the southern and central portions of the Labrador margin, whereas a broad, margin-parallel zone of thicker crust has been detected outboard of the continental shelf along the northern Labrador margin. Our final gravity models suggest that Late Cretaceous rift packages from further south extend along the entire Labrador margin and open the possibility of a Late Cretaceous source rock fairway extending into the Labrador basins.


Sign in / Sign up

Export Citation Format

Share Document