Near-surface velocity estimation using source-domain full traveltime inversion and early arrival waveform inversion

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. R335-R344 ◽  
Author(s):  
Lu Liu ◽  
Yan Wu ◽  
Bowen Guo ◽  
Song Han ◽  
Yi Luo

Accurate estimation of near-surface velocity is a key step for imaging deeper targets. We have developed a new workflow to invert complex early arrivals in land seismic data for near-surface velocities. This workflow is composed of two methods: source-domain full traveltime inversion (FTI) and early arrival waveform inversion (EWI). Source-domain FTI automatically generates the background velocity that kinematically matches the reconstructed plane-wave sources from early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging and labor-intensive steps in ray-based first-arrival traveltime tomography, especially when the subsurface medium contains low-velocity zones that cause shingled multivalue arrivals. Moreover, unlike the conventional Born-based method, source-domain FTI can determine if the initial velocity is slower or faster than the true one according to the gradient sign. In addition, the computational cost is reduced considerably by using the one-way wave equation to extrapolate the plane-wave Green’s function. The source-domain FTI tomogram is then used as the starting model for EWI to obtain the short-wavelength component associated with the velocity model. We tested the workflow on two synthetic and one onshore filed data sets. The results demonstrate that source-domain FTI generates reasonable background velocities for EWI even though the first arrivals are shingled, and that this workflow can produce a high-resolution near-surface velocity model.

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. U77-U86
Author(s):  
Lu Liu ◽  
Xudong Duan ◽  
Yi Luo

A new method of data-domain full traveltime inversion (FTI) is proposed to estimate the near-surface velocity model using early arrivals in seismic shot gathers. Data-domain FTI is capable of generating a background velocity model from which the predicted early arrivals can kinematically match the observed ones. Such a match is measured and quantified in terms of the crosscorrelation function between the computed and observed traces. Our method aims to find an optimal estimated velocity model that minimizes the crosscorrelation computed from the selected early arrivals. The early arrivals are isolated via a sequence of operations, including the [Formula: see text]-[Formula: see text] scan, autopicking, multidomain quality control, and guide interpolation. Because windows, rather than exact arrival times, are constructed, the difficulties encountered while picking precise arrivals are reduced. In addition, the gradient of data-domain FTI is derived based on an amplitude-constrained optimization problem, which makes the gradient essentially different from that derived with the Born approximation in which no constraint is used. The constraint requires the inversion to honor traveltime information only, and it thus ignores any amplitude changes caused by velocity variations. This method is validated using 3D synthetic as well as field data sets. The results show that data-domain FTI, combined with the early arrival selection workflow, is able to generate reasonable background velocities that kinematically match the predicted early arrivals with the observed ones, and the associated depth-domain images are clearly improved.


2018 ◽  
Vol 58 (2) ◽  
pp. 884
Author(s):  
Lianping Zhang ◽  
Haryo Trihutomo ◽  
Yuelian Gong ◽  
Bee Jik Lim ◽  
Alexander Karvelas

The Schlumberger Multiclient Exmouth 3D survey was acquired over the Exmouth sub-basin, North West Shelf Australia and covers 12 600 km2. One of the primary objectives of this survey was to produce a wide coverage of high quality imaging with advanced processing technology within an agreed turnaround time. The complexity of the overburden was one of the imaging challenges that impacted the structuration and image quality at the reservoir level. Unlike traditional full-waveform inversion (FWI) workflow, here, FWI was introduced early in the workflow in parallel with acquisition and preprocessing to produce a reliable near surface velocity model from a smooth starting model. FWI derived an accurate and detailed near surface model, which subsequently benefitted the common image point (CIP) tomography model updates through to the deeper intervals. The objective was to complete the FWI model update for the overburden concurrently with the demultiple stages hence reflection time CIP tomography could start with a reasonably good velocity model upon completion of the demultiple process.


2020 ◽  
Vol 8 (3) ◽  
pp. T651-T665
Author(s):  
Yalin Li ◽  
Xianhuai Zhu ◽  
Gengxin Peng ◽  
Liansheng Liu ◽  
Wensheng Duan

Seismic imaging in foothills areas is challenging because of the complexity of the near-surface and subsurface structures. Single seismic surveys often are not adequate in a foothill-exploration area, and multiple phases with different acquisition designs within the same block are required over time to get desired sampling in space and azimuths for optimizing noise attenuation, velocity estimation, and migration. This is partly because of economic concerns, and it is partly because technology is progressing over time, creating the need for unified criteria in processing workflows and parameters at different blocks in a study area. Each block is defined as a function of not only location but also the acquisition and processing phase. An innovative idea for complex foothills seismic imaging is presented to solve a matrix of blocks and tasks. For each task, such as near-surface velocity estimation and static corrections, signal processing, prestack time migration, velocity-model building, and prestack depth migration, one or two best service companies are selected to work on all blocks. We have implemented streamlined processing efficiently so that Task-1 to Task-n progressed with good coordination. Application of this innovative approach to a mega-project containing 16 3D surveys covering more than [Formula: see text] in the Kelasu foothills, northwestern China, has demonstrated that this innovative approach is a current best practice in complex foothills imaging. To date, this is the largest foothills imaging project in the world. The case study in Kelasu successfully has delivered near-surface velocity models using first arrivals picked up to 3500 m offset for static corrections and 9000 m offset for prestack depth migration from topography. Most importantly, the present megaproject is a merge of several 3D surveys, with the merge performed in a coordinated, systematic fashion in contrast to most land megaprojects. The benefits of this approach and the strategies used in processing data from the various subsurveys are significant. The main achievement from the case study is that the depth images, after the application of the near-surface velocity model estimated from the megasurveys, are more continuous and geologically plausible, leading to more accurate seismic interpretation.


2016 ◽  
Vol 4 (4) ◽  
pp. T627-T635
Author(s):  
Yikang Zheng ◽  
Wei Zhang ◽  
Yibo Wang ◽  
Qingfeng Xue ◽  
Xu Chang

Full-waveform inversion (FWI) is used to estimate the near-surface velocity field by minimizing the difference between synthetic and observed data iteratively. We apply this method to a data set collected on land. A multiscale strategy is used to overcome the local minima problem and the cycle-skipping phenomenon. Another obstacle in this application is the slow convergence rate. The inverse Hessian can enhance the poorly blurred gradient in FWI, but obtaining the full Hessian matrix needs intensive computation cost; thus, we have developed an efficient method aimed at the pseudo-Hessian in the time domain. The gradient in our FWI workflow is preconditioned with the obtained pseudo-Hessian and a synthetic example verifies its effectiveness in reducing computational cost. We then apply the workflow on the land data set, and the inverted velocity model is better resolved compared with traveltime tomography. The image and angle gathers we get from the inversion result indicate more detailed information of subsurface structures, which will contribute to the subsequent seismic interpretation.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. U63-U77
Author(s):  
Bernard K. Law ◽  
Daniel Trad

An accurate near-surface velocity model is critical for weathering statics correction and initial model building for depth migration and full-waveform inversion. However, near-surface models from refraction inversion often suffer from errors in refraction data, insufficient sampling, and over-simplified assumptions used in refraction algorithms. Errors in refraction data can be caused by picking errors resulting from surface noise, attenuation, and dispersion of the first-arrival energy with offset. These errors are partially compensated later in the data flow by reflection residual statics. Therefore, surface-consistent residual statics contain information that can be used to improve the near-surface velocity model. We have developed a new dataflow to automatically include median and long-wavelength components of surface-consistent reflection residual statics. This technique can work with any model-based refraction solution, including grid-based tomography methods and layer-based methods. We modify the cost function of the refraction inversion by adding model and data weights computed from the smoothed surface-consistent residual statics. By using an iterative inversion, these weights allow us to update the near-surface velocity model and to reject first-arrival picks that do not fit the updated model. In this nonlinear optimization workflow, the refraction model is derived from maximizing the coherence of the reflection energy and minimizing the misfit between model arrival times and the recorded first-arrival times. This approach can alleviate inherent limitations in shallow refraction data by using coherent reflection data.


Sign in / Sign up

Export Citation Format

Share Document