Constraining magnetic amplitude inversion with magnetotelluric data to image volcanic units: A case study

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. B63-B75
Author(s):  
Kaijun Xu ◽  
Yaoguo Li

We present a case study on imaging volcanic units in gas exploration by constraining magnetic amplitude inversions using magnetotelluric (MT) sounding data at sparse locations. Magnetic data can be effective in mapping volcanic units because they have remanent magnetization and significant susceptibility contrast with surrounding rocks. Although magnetic data can identify the lateral distribution of volcanic units, they often have difficulties in defining the depth extent. For this reason, additional structural constraints from other geophysical methods can often help improve the vertical resolution. Among the independent geophysical methods, MT data can provide the needed structural information at a low cost. We have investigated an approach to combine a set of sparse MT soundings with magnetic amplitude data to image the distribution of volcanics in a basin environment. We first use a blocky 1D MT inversion based on Ekblom norm to obtain the structural constraint, and then we perform a constrained 3D magnetic amplitude inversion to recover the distribution of effective susceptibility by incorporating the structural information from MT soundings. We determine that even a small number of MT stations (e.g., 20) in a [Formula: see text] area is sufficient to drastically improve the magnetic amplitude inversion. Our results indicate that magnetic amplitude inversion with structural constraint from MT soundings form a practical and cost-effective means to map the lateral and vertical distribution of volcanics.

Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. B13-B22 ◽  
Author(s):  
Marcelo Leão-Santos ◽  
Yaoguo Li ◽  
Roberto Moraes

Strong hydrothermal alteration modifies rock physical properties in iron oxide-copper-gold deposits (IOCGs) and may result in characteristic signatures detectable in geophysical surveys. Magnetic data are commonly used in characterizing orebodies, and 3D inversions are often used to assist in interpretations. In areas with strong remanence and self-demagnetization, the total magnetization can have directions different from the inducing field direction. This deviation precludes the use of traditional inversion methods. Magnetic amplitude inversion offers one solution to this challenge because the amplitude data are weakly dependent on the magnetization direction. In addition, the low magnetic latitude also imposes difficulty in amplitude data calculation due to the instability in the component conversion in the wavenumber domain. To formulate a practical approach, we present a case study on applying the magnetic amplitude inversion to the Furnas southeast IOCG deposit at the low magnetic latitude in Carajás Mineral Province, Brazil, and demonstrate that the approach can reliably recover an interpretable distribution of effective magnetic susceptibility and identify massive magnetite from hydrothermal alterations associated with the high-grade ore.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. J75-J84 ◽  
Author(s):  
Camriel Coleman ◽  
Yaoguo Li

Three-dimensional inversion plays an important role in the quantitative interpretation of magnetic data in exploration problems, and magnetic amplitude data can be an effective tool in cases in which remanently magnetized materials are present. Because amplitude data are typically calculated from total-field anomaly data, the error levels must be characterized for inversions. Lack of knowledge of the error in amplitude data hinders the ability to properly estimate the data misfit associated with an inverse model and, therefore, the selection of the appropriate regularization parameter for a final model. To overcome these challenges, we have investigated the propagation of errors from total-field anomaly to amplitude data. Using parametric bootstrapping, we find that the standard deviation of the noise in amplitude data is approximately equal to that of the noise in total-field anomaly data when the amplitude data are derived from the conversion of total-field data to three orthogonal components. We then illustrate how the equivalent source method can be used to estimate the error in total-field anomaly data when needed. The obtained noise estimate can be applied to amplitude inversion to recover an optimal inverse model by applying the discrepancy principle. We test this method on synthetic and field data and determine its effectiveness.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. B121-B133 ◽  
Author(s):  
Shida Sun ◽  
Chao Chen ◽  
Yiming Liu

We have developed a case study on the use of constrained inversion of magnetic data for recovering ore bodies quantitatively in the Macheng iron deposit, China. The inversion is constrained by the structural orientation and the borehole lithology in the presence of high magnetic susceptibility and strong remanent magnetization. Either the self-demagnetization effect caused by high susceptibility or strong remanent magnetization would lead to an unknown total magnetization direction. Here, we chose inversion of amplitude data that indicate low sensitivity to the direction of magnetization of the sources when constructing the underground model of effective susceptibility. To reduce the errors that arise when treating the total-field anomaly as the projection of an anomalous field vector in the direction of the geomagnetic reference field, we develop an equivalent source technique to calculate the amplitude data from the total-field anomaly. This equivalent source technique is based on the acquisition of the total-field anomaly, which uses the total-field intensity minus the magnitude of the reference field. We first design a synthetic model from a simplified real case to test the new approach, involving the amplitude data calculation and the constrained amplitude inversion. Then, we apply this approach to the real data. The results indicate that the structural orientation and borehole susceptibility bounds are compatible with each other and are able to improve the quality of the recovered model to obtain the distribution of ore bodies quantitatively and effectively.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. J11-J19 ◽  
Author(s):  
Shu-Ling Li ◽  
Yaoguo Li

We study the inversion of magnetic data acquired over a rugged observation surface and where the buried source bodies have strong remanent magnetization that leads to unknown total magnetization directions. These factors pose significant challenges for processing and inversion of such data. To tackle the challenges from both a rugged observation surface and an unknown magnetization direction, we propose a strategy through the joint use of the equivalent source technique and 3D amplitude inversion to obtain 3D magnetization strength. We use equivalent source processing to calculate the amplitude data in the space domain because the use of the wavenumber-domain method is invalid due to large variations in the data elevation. We then carried out an amplitude inversion to generate a 3D subsurface distribution of the magnitude of the total magnetization vector. The results from a synthetic example and aeromagnetic data in Daye Mine in China showed that this approach is effective and images the magnetic units whose contact zones with the limestone country rock host the mineralization. The method is general and can be applied to a variety of cases with similar challenges.


2015 ◽  
Vol 3 (2) ◽  
pp. SL15-SL25 ◽  
Author(s):  
Thomas R. H. Woolrych ◽  
Asbjorn N. Christensen ◽  
Darcy L. McGill ◽  
Tom Whiting

A range of geophysical techniques has been used at various stages of the discovery and delineation of the Kitumba deposit in Central Zambia. Early era magnetics, geologic mapping, artisanal Cu plays, and the application of an iron oxide copper gold (IOCG) exploration model led explorers to the area in the 1990s. An airborne gravity gradiometer (AGG) survey was flown in 2004, and it highlighted key regional elements considered to be prerequisite for prospective IOCG mineralization. The AGG survey accurately delineated the spatial extents of two target areas referred to as the Kitumba and Mutoya systems. Gravity, radiometric, and magnetic data sets acquired as part of the AGG survey have mapped geologic and structural information as well as the extent of the IOCG alteration system. Significant uranium anomalism in the radiometric data was identified at Kitumba upon which the discovery hole S36-001 was sited. In 2012, a 3D direct current resistivity and induced polarization survey was conducted over Kitumba. The survey results provided 3D models of induced polarization chargeability anomalism and allowed successful delineation of sulfide material within the known deposit. The survey also provided an enhanced understanding of the 3D geometry of the mineralization. This improved understanding allowed a refocusing of drilling activities to best target extensions to existing mineralization.


Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. J1-J11
Author(s):  
Marlon C. Hidalgo-Gato ◽  
Valéria C. F. Barbosa ◽  
Vanderlei C. Oliveira

We have developed an inversion method to recover the depth and the total magnetization intensity of the basement under a sedimentary basin using the amplitude of the magnetic anomaly vector (amplitude data). Because the amplitude data are weakly dependent on the magnetization direction, our method is suitable for interpreting areas with remanent magnetization. Our method assumes constant magnetized basement rocks overlain by nonmagnetic sediments. To overcome the inherent ambiguity of potential field data, we assume knowledge of the average depth of the basement and use it as a constraint to regularize the inversion. A sensitivity analysis with synthetic data shows the weak dependency of the magnetic amplitude inversion on the magnetization direction. Different combinations of magnetization directions recover the interface separating sediments from basement rocks. Test on field data over the Foz do Amazonas Basin, Brazil, recovers the shape of the basement relief without any knowledge about the magnetization intensity and direction. The estimated basement relief reveals a smooth basement framework with basement highs in the central part of the area. In a regional-scale perspective, the deeper and constant estimated basement relief at the northernmost limit of the area may suggest changing in crustal domains from a hyperextended continental crust to homogeneous oceanic crust.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. B219-B225 ◽  
Author(s):  
Yaoguo Li ◽  
Zhanxiang He ◽  
Yunxiang Liu

We have performed a case study on the use of magnetic amplitude inversion in imaging volcanic rocks that are buried in a sedimentary basin and have strong remanent magnetization. The application arises in exploration for natural gas hosted in volcanic rocks in basin environments. The weak anomaly associated with the volcanic units and the presence of remanent magnetization therein pose major challenges in the magnetic interpretation. We first use a Wiener filter based on an ensemble analysis to examine the depth characteristics of the anomalies, and then we use an inversion-based signal separation to extract the anomaly for final interpretation. We apply an amplitude inversion method to recover the distribution of effective susceptibility in the absence of the knowledge about the total magnetization direction. The result effectively identifies the volcanic rock units at large depths and the imaged distribution of these units is consistent with information from drillholes and local geology.


Sign in / Sign up

Export Citation Format

Share Document