Stripping induced polarization effects from airborne electromagnetics to improve 3D conductivity inversion of a narrow palaeovalley

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. B161-B167 ◽  
Author(s):  
James Macnae ◽  
Xiuyan Ren ◽  
Tim Munday

The electrical conductivity distribution within wide palaeochannels is usually well-mapped from airborne electromagnetic data using stitched 1D algorithms. Such stitched 1D solutions are, however, inappropriate for narrow valleys. An alternative option is to consider 2D or 3D models to allow for finite lateral extent of conductors. In airborne electromagnetic data within the Musgrave block near the well-studied Valen conductor, strong induced polarization (IP) and superparamagnetic (SPM) effects make physical property and structure estimation even more uncertain for deep channel clays, particularly those whose channel widths are comparable to their depth of burial. We developed a recursive data fitting algorithm based on dispersive thin sheet responses. The separate IP and SPM components of the fit provide near-surface chargeability and SPM distributions, and the associated electromagnetic (EM) fit provides stripped data with monotonic decays compatible with a simple nondispersive conductivity model. The validity of this stripped data prediction was tested through a comparison of 1D conductivity-depth imaging and 3D inversion applied to the original data and the stripped data. Due to the forked geometry of the deep conductivity structure in the region we investigated, we successfully used 3D rather than 2D inversion to predict the conductivity distribution related to the EM data. We recovered from the stripped data a continuous conductivity structure consistent with a branching, clay-filled palaeovalley under cover.

Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 492-500 ◽  
Author(s):  
James E. Reid ◽  
James C. Macnae

When a confined conductive target embedded in a conductive host is energized by an electromagnetic (EM) source, current flow in the target comes from both direct induction of vortex currents and current channeling. At the resistive limit, a modified magnetometric resistivity integral equation method can be used to rapidly model the current channeling component of the response of a thin-plate target energized by an airborne EM transmitter. For towed-bird transmitter–receiver geometries, the airborne EM anomalies of near-surface, weakly conductive features of large strike extent may be almost entirely attributable to current channeling. However, many targets in contact with a conductive host respond both inductively and galvanically to an airborne EM system. In such cases, the total resistive-limit response of the target is complicated and is not the superposition of the purely inductive and purely galvanic resistive-limit profiles. Numerical model experiments demonstrate that while current channeling increases the width of the resistive-limit airborne EM anomaly of a wide horizontal plate target, it does not necessarily increase the peak anomaly amplitude.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. E153-E162 ◽  
Author(s):  
James Macnae ◽  
Tim Munday ◽  
Camilla Soerensen

All available inversion software for airborne electromagnetic (AEM) data can at a minimum fit a nondispersive conductivity model to the observed inductive secondary field responses, whether operating in the time or frequency domain. Quasistatic inductive responses are essentially controlled by the induction number, the product of frequency with conductivity and magnetic permeability. Recent research has permitted the conductivity model to be dispersive, commonly using a single Cole-Cole parameterization of the induced polarization (IP) effect; but this parameterization slows down and destabilizes any inversion, and it does not account for the need for dual or multiple Cole-Cole responses. Little has been published on inverting AEM data affected by frequency-dependent magnetic permeability, or superparamagnetism (SPM), usually characterized by a Chikazumi model. Because the IP and SPM effects are small and are usually only obvious at late delay times, the aim of our research is to determine if these IP and SPM effects can be fitted and stripped from the AEM data after being approximated with simple dispersive models. We are able to successfully automate a thin-sheet model to do this stripping. Stripped data then can be inverted using a nondispersive conductivity model. The IP and SPM parameters fitted independently to each independent measured decay to provide stripping are proven to be spatially coherent, and they are geologically sensible. The results are found to enhance interpretation of the regolith geology, particularly the nature and distribution of transported materials that are not afforded by mapping conductivity/conductance alone.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. E433-E446 ◽  
Author(s):  
James Macnae

The primary aim of my research is to improve the characterization of induced polarization (IP) responses in airborne electromagnetic (AEM) survey data. The principal objectives are to test alternative methodologies for quantitative modeling and inversion to extract the spatial variation of IP parameters using the inductively thin-sheet model. The methods tested first fit, by nonnegative least squares, an AEM decay to the early delay time data, using thin-sheet basis functions. This modeled AEM decay is assumed to represent the IP source. It is then convolved with a few Cole-Cole models spanning the range of parameter sensitivity to get IP basis functions appropriate for the AEM excitation. Method 1 fits a linear sum of several AEM basis functions plus one IP basis function at a time and chooses the model with least-fitting error at late delay times. Method 2 fits a linear sum of several IP and several AEM basis functions. Both methods fit IP affected airborne data well, with normalized fitting errors being reduced by a significant factor when IP affects the data and is taken into account. Using penalty weights, superparamagnetic (SPM) effects can be simultaneously estimated in the fitting process. Without such weighting, SPM and IP parameter estimations are unstable. Cole-Cole models predict that the sensitivity of inductive airborne IP collected at 25 or 30 Hz base frequency indicates little overlap with galvanic ground IP collected with a 0.125 Hz waveform. Many easy IP sulfide targets with IP physical properties determined by ground surveys are predicted not to have a detectable airborne IP response. Clays, however, are predicted to have a small detectable background response that for airborne data would not be well-fitted by a single Cole-Cole response.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. E471-E479 ◽  
Author(s):  
James Macnae ◽  
Kate Hine

We have first analyzed the ability of polarizable and superparamagnetic thin sheets in the near surface to fit airborne electromagnetic (AEM) data using data from western Tasmania. Then we analyzed the results of such fitting in the context of geologic mapping and available ground induced polarization (IP) data. Small to large IP effects were found to considerably improve the fit to the observed AEM data, and the overall fitted IP parameters were spatially consistent. However, the locations of anomalous IP parameters were quite distinct from anomalies in other geophysical data. The airborne chargeability highs were adjacent to or surrounded the ground chargeability highs in the five cases analyzed from Tasmanian data. Modeling using the established Cole-Cole physical property values for sulfides predicts that an inductive airborne system is insensitive to many conventional IP targets, unless the mineral grain size is substantially less than 1 mm. In the cases in which airborne IP responses were adjacent to ground IP targets, we hypothesized that the airborne IP may be finer grained minerals in an alteration halo surrounding the sulfide sources of the large ground IP anomalies. Surficial clays encountered in drillholes did not have significant ground or airborne IP responses. A companion paper comes to a similar conclusion using ground and airborne data from a copper deposit in New South Wales.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. B211-B220 ◽  
Author(s):  
James Macnae

Our aim was to confirm the ability of polarizable and superparamagnetic (SPM) thin sheets in the near surface to improve the model fit of airborne electromagnetic data. Our method was to fit induced polarization (IP) effects with Cole-Cole complex conductivity and fit SPM effects with Chikazumi complex permeability. Surficial conductors were assumed to be the source of the conductivity and IP effects. In this case history from Lac Brûlé, Quebec over an anorthosite intrusion, small to large IP effects were found to be essential to fit most of the observed data. In some areas, it was also possible to separate SPM effects from IP effects in the data. Most IP effects in this unusually polarizable area were adequately fit with a distributed decay characterized with a frequency dependence of [Formula: see text], but some required a sharper response characterized by [Formula: see text]. In general, fitted IP time constants were anticorrelated with fitted frequency dependence, with short time constants fitted to the larger [Formula: see text] values and vice versa. SPM effects were detected in a small but significant fraction of the data, and appear to be spatially related to static magnetic anomalies. The SPM in this case is presumably related to fine-grained rock magnetism, rather than the more common case of weathering products.


Geophysics ◽  
2015 ◽  
Vol 80 (6) ◽  
pp. K25-K36 ◽  
Author(s):  
Michael S. McMillan ◽  
Christoph Schwarzbach ◽  
Eldad Haber ◽  
Douglas W. Oldenburg

Sign in / Sign up

Export Citation Format

Share Document